Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings

Publication Type

Report

Abstract

Lighting consumes about 20 to 40% of total electricity use in large office buildings in the U.S. and China. In order to develop better lighting simulation models it is crucial to understand the characteristics of lighting energy use. This paper analyzes the main characteristics of lighting energy use over various time scales, based on the statistical analysis of measured lighting energy use of 17 large office buildings in Beijing and Hong Kong. It was found that the daily 24-hour variations of lighting energy use were mainly driven by the schedule of the building occupants. Outdoor illumination levels have little impact on lighting energy use in large office buildings due to the lack of automatic daylighting controls and relatively small perimeter areas. A stochastic lighting energy use model was developed based on different occupant activities during six time periods throughout a day, and the annual distribution of lighting power across those periods. The model was verified using measured lighting energy use of one selected building. This study demonstrates how statistical analysis and stochastic modeling can be applied to lighting energy use. The developed lighting model can be adopted by building energy modeling programs to improve the simulation accuracy of lighting energy use.

Year of Publication

2013