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A New Method for Predicting the Solar Heat Gain
of Complex Fenestration Systems
I. Overview and Derivation of the Matrix Layer Calculation

J. H. Klems, Ph.D.

Abstract

A new method of predicting the solar heat gain through complex fenestration systems involving
nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by
ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional
radiative transmittance and reflectance of each layer of a fenestration system. The properties of
systems containing these layers are then built up computationally from the measured layer
properties using a transmission/multiple-reflection calculation. The calculation produces the total
directional-hemispherical transmittance of the fenestration system and the layer-by-layer
absorptances. These properties are in turn combined with layer-specific measurements of the
inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain
coefficient.

In this first in a series of related papers describing the project, the assumptions and limitations of
the calculation method are described and the derivation of the matrix calculation technique from the
initial integral equations is presented.

Introduction

Solar heat gain has become an increasingly important and complex aspect of the continuing effort
to make windows more energy-efficient. On one hand, the usual strategy of reducing summer
cooling loads by limiting solar heat gain has been complicated by the increasing recognition that the
use of daylight with proper lighting controls can produce substantial energy savings in commercial
buildings, a strategy that argues for high visible transmittance. Building energy simulation studies
(Chot, Johnson et al. 1984) show that window management yields both peak and annual energy
savings, and in fact assume that some form of shading for glare control is necessary for any
successful daylight utilization. On the other hand, recent measurements (Klems 1989; Klems
1992) show that solar heat gain is an important determinant of the winter energy performance of
windows. While sophisticated (i.e., building simulation model-based) calculations of window
performance would include the effect of winter solar gain, all too frequently discussions of winter
performance have been based on simplified calculations that considered only changes in U-value.
The effect of solar gain on winter performance is particularly important in residences, where a large
percentage of windows have some form of shading or privacy device. Thus, it is not possible to
calculate window performance either in winter or summer without considering solar gain, and it is
necessary to address the issue of solar gain through windows with nonspecular shading devices
(such as shades, blinds, etc.), which we term complex fenestration systems.

The traditional method of determining complex fenestration system performance is by measurement
in a solar calorimeter, (Parmelee, Aubele et al. 1948; Parmelee, Aubele et al. 1953; Ozisik and
Schutrum 1959; Pennington, Smith et al. 1964; Yellott 1965) but a systematic characterization by
this method poses some daunting problems. Shades, blinds and drapes vary widely in reflectance,



transmittance, and color. Moreover, the optical properties of venetian blinds vary with slat tilt
angle. All of them may be combined with glazings of various numbers of panes, pane thicknesses,
tints and coatings. To construct a solar heat gain rating system analogous to the NFRC U-value
method, (NFRC 1991) it would be necessary for a manufacturer to determine the performance of a
product line (possibly containing many products that differ only in color and surface pattern) in
combination with every possible glazing system (as well as every adjustment configuration for
systems such as venetian blinds). To do this by calorimeter measurement for each distinct
combination would require a prohibitive amount of testing. On the other hand, to construct an
analytical model of the type that has sometimes appeared in the literature (Farber, Smith et al.
1963) for each specific type of shading device would be a large research effort, for which much of
the essential heat transfer data are not currently available.

Therefore, it is useful to devise a method of calculating solar heat gain that is intermediate between
the extremes of calorimetric measurement and first-principles calculation, enabling one to calculate
the solar heat gain through complex fenestration systems from a smaller and more easily obtained
set of measurements. We have been developing and validating such a method in a research project
sponsored jointly by ASHRAE and the U.S. Department of Energy. This paper begins the
summary of that work with the derivation of the calculation method by physical arguments. A
companion paper (Klems 1993B) presents a more detailed account of the use of the method in
calculating solar-optical properties for multilayer systems.

A New Method for Calculating Solar Heat Gain

We begin by examining the usual expression for the solar heat gain coefficient, F, of a fenestration
system,

F= ‘L'+N,(X (1)

where T and o are the transmittance and absorptance, respectively, and Ny is the inward-flowing
fraction of the absorbed solar energy. If we recognize that this quantity inherently depends on the

solar incident angle, 0, that for a device which is not cylindrically symmetric (such as a blind,

which has a preferred direction, the slat orientation) it may also depend on the angle, ¢, between a
characteristic direction and the plane of incidence, and that the fenestration consists of M layers
denoted by 1, then we can generalize Equation (1) to make it valid for any fenestration system:

F(8,0)=T,,(6,9)+ 3. N,A;(6.9), @)

where Tty denotes the front directional-hemispherical transmittance of the system , and Nj, Ag
denote the inward-flowing fraction and front absorptance, respectively, of the ith layer. The layer
inward-flowing-fraction, N,, represents the fraction of the energy absorbed in the ith layer that

ultimately flows into the building space, and is the analog of Ny in equation 1. We next observe
that Ty and Afj are purely optical quantities, depending on such properties as wavelength and
reflectance, but not on temperature. The layer inward-flowing fraction Nj is the only truly
calorimetric quantity in the equation. It may depend on the geometry of the fenestration system, as
well as on temperatures and other heat transfer variables, but does not depend on the short-
wavelength properties of the system, such as color or reflectance.



It follows that if Nj can be determined separately a single determination will be useful for
specifying the solar heat gain coefficient for a large number of systems. For example, the values
of N;j for a double glazed system with an interior shade should apply to all colors and patterns of
shades and to clear, tinted and even some coated glazings. Coatings that modify the emissivity,
however, would require a different set of N; values. We therefore took the approach of measuring
N;j for a series of thermally prototypic system geometries and combining these measurements with
detailed optical measurements of the components to produce the solar heat gain coefficient of an
individual system.

We can summarize the essentials of the method as follows: We begin with the optical properties of
individual layers, which are derived from measurement. For specular layers such as glasses these
properties are frequently known or may be obtained using standard optical techniques. For non-
specular layers biconical optical measurements are required, and it was necessary to develop an
apparatus and a technique for measuring them, as described below. A mathematical technique was
developed to combine the individual layer properties to produce the overall system transmittances
and layer absorptances appearing in equation 2. This method turns out to be most conveniently
implemented utilizing matrix equations analogous to a previously-published treatment (Papamichael
and Winkelmann 1986). A conceptual outline of the method has also been presented previously,
(Papamichael, Klems et al. 1988) and the complete derivation appears below.” The system optical
properties are then combined with measurements of Nj for thermally prototypical geometries. The
determination of F as a function of incident direction for a particular device in a given fenestration
system thus requires

* Measurement of the bidirectional (or biconical) transmittances and reflectances of the
nonspecular device,

* Knowledge of the solar-optical properties of the other layers of the system (e.g., glass
properties),

+ Calorimetric measurement of the layer inward-flowing fractions Nj for the particular
geometric and thermal system configuration under consideration,

+ Calculation of the system directional-hemispherical transmittances and layer-by-layer
absorptances, and

* Calculation of the solar heat gain coefficient, F(8,¢), using equation (2).
Calculation of System Optical Properties

Our approach to the optical problem begins with a consideration of transmission of incident
radiation through a generalized optical system to a point P, as indicated in Figure 1(A). Because
the system is not assumed to be specular, point P may receive radiation from any points in the
system, indicated by the rays from Y and Y in the diagram. In general, the radiation ariving from
two points, Y and Y’, will not be the same. This may be for either of two reasons. The optical
properties of the system may differ at the points Y and Y’, or the transmission may depend on the
angle through which the incident ray is scattered. Since point P is at a finite distance from the

optical system, the scattering angles 01 and 61’ will differ. In the general case, the scattering
direction must of course be specified by two angles (as must the incident direction), but for the

* The reader should note that while the general matrix form presented in the references (Papamichael and
Winkelmann 1986) and (Papamichael, Klems et al. 1988), is preserved in the present work, the detailed mathematical
expressions in the references do not distinguish between outgoing radiance and incoming irradiance. This work
makes that distinction, resulting in different mathematical expressions.



present we will use a single angle to denote direction in order to simplify the notation of the
discussion. The second angle will be included at the appropriate time.

The effects of angle dependence and sample inhomogeneity are separated in Figure 1(B). If we
consider two points P and P’ connected to the points Y and Y’ by parallel rays, differences in the
radiation arriving at the two points will be solely due to spatial inhomogeneities. If we consider
that the optical system consists of more than one layer (neglecting for the moment the possibility of
nterreflections between layers), for any path of a ray Y Y,P through the system to point P, we can
construct a translated image ray Y|’ Y3'P’ that passes through a given point Y’ in the initial layer,

as shown in Figure 1(C). If the incident radiation flux is denoted 1(8g), where 8¢ denotes the
direction of the incident radiation, then the radiation arriving at point P will be given by

I(P)= [ [d0,d®,T,(Y,,6,:6))T,(1,,6,:6,)I(6,), 3)

where the boldface symbols indicate that the integral is a two-dimensional one. We note that for a

given point P, the points Y and Y7 are related to the directions 6 and 87 by the requirement that
radiation originating at Y| must arrive at point P; therefore only two of the four quantities are
independent, and we have chosen the directions in equation 3. The functions T} and T, are the
transmittances of the two layers. Equation 3 expresses the fact that one must add up radiation
arriving at P by all possible paths (still neglecting interreflections). The radiation arriving at the
translated image point P’ would be given by exactly the same expression, except that Y and Y5
would be replaced by the translated points Y’ and Y7'. The total transmission of the system
would then be obtained by adding up I(P) for all points lying on a suitable surface subtending the
interior side of the optical system (for example, a hemisphere or an infinite plane). In principle, the
incident radiation should be treated spectrally, expressing the intensity at a particular wavelength as

1(80,A), and the calculation of equation 3 should be done at each wavelength and the result
integrated over wavelength.

Thus, for an exact treatment one would need to characterize each layer of the optical system by a

transmission function Tj(Y,04;6i.1,A), where 0;.1 is the direction of the radiation emerging from
the previous layer (or the direction of the incident radiation, for i-1=0). Since, as has been noted,

both the point Y; and the directions 0; and 0;.] are inherently two-dimensional quantities, each
layer would need to be specified by a transmission that is a function of seven variables. This is an
impracticably large amount of information and leads one to ask to what extent approximations and
simplifications are possible to reduce the information requirements.

The first approximation is to use optical properties that are spectrally averaged over the transparent
region of glass, 300-2700 nm, neglecting the region of low transparency between 2700 nm and the
point, around 4500 nm, where it becomes effectively opaque. As is well known, (Rubin 1985) the
spectral transmittance of clear glass is relatively flat in the 300-2700 nm region, with the highest
(and most constant) transmittance in the visible. As we show in Appendix 1, the condition for a
treatment utilizing integrated spectral properties to be valid is that most layers have spectrally flat
optical properties, with at most one strongly selective layer. The spectrally-averaged method
should be suitable, then, for fenestrations systems consisting of clear glass layers and non-
selective shading elements, with at most one tinted or selective layer. As the method is applied to
progressively more complicated systems, such as colored blinds or shades combined with tinted or
selective glazing, or multiple blind or curtain systems of different colors, the treatment could
become less accurate and eventually inapplicable. As will become clear, this research has been
focused on the spatial and angular aspects of systems rather than the spectral properties. Our



studies have been confined to the spectrally simple end of this continuum, and further work will be
necessary to determine the limits of applicability.

The second approximation is to remove the explicit dependence on Y in equation 3 by replacing the
transmission functions in equation 3 by averages taken over a suitably-sized area, with the
incoming and outgoing directions held fixed. This is the equivalent of averaging together the
energy arriving at point P in Figure 1(B) with all of its translated image points as indicated by point
P’ in that figure. This will not change the total transmittance, which depends only on the sum of
I(P) over all such points. The information lost in this averaging process is that which would
enable one to construct an image of the fenestration system as seen from a particular point P or P’.
This is a level of detail not important to the problem at hand.

The approximation in effect provides a way of treating systems with important spatial
inhomogeneities, such as venetian blinds, as though they were homogeneous layers. The key
point is that the essential inhomogeneity is of a limited size, for example, a slat size of one to two
inches in a venetian blind. The entire device consists of repetitions of this basic unit, so if one has
averaged properties over a spatial area large compared to this unit, one obtains a property that
applies (on the average) anywhere on the device. This is the analog of treating diffuse surfaces
(which are inhomogeneous on a very small spatial scale) as uniform materials. In this
approximation, the directly-transmitted radiation from a venetian blind in the sunlight would be a
uniformly-lit patch. In reality, a venetian blind produces a series of stripes, and in addition a series
of small dots corresponding to the holes where the blind cords penetrate the slats. The difference
between the two treatments does not become important until one is making calculations that depend
on knowing radiant fluxes with spatial resolution on the order of fractions of an inch. This is far
beyond the present or forseeable future requirements of building energy calculations.

Applying this spatial averaging to each layer does place limitations on the applicability of the
method to certain systems. In Figure 1(C) it can be seen that if the averaging process described is
carried out for the entire system, then the overall total transmission is unaffected, but if it is carried
out separately for each individual layer additional information is lost, namely the correlation
between the points Y7 and Y7 (or Y’ and Y7’ for the translated image ray). The calculation will
not be correct for systems for which this correlation is important. This means that the method will
not be applicable to systems containing two layers with spatial inhomogeneities of comparable size
in the same dimension. For example, a system with two identical venetian blinds would not be
correctly treated: With the blinds in a partially closed position, one could change the overall
transmittance from a very high to a very low value by translating one of the blinds in its plane by
half a slat width in the direction perpendicular to the slats. On the other hand, when the
inhomogeneities are not of comparable size, such as a system containing both a venetian blind and
a drape, or when the inhomogeneities are in different dimensions, such as a horizontal and a
vertical venetian blind, positional correlations between layers should not be important and the
method will be applicable. Inapplicability to a small and rather unlikely class of fenestration
systems seems a small price to pay for the great advantage of simplicity provided by this
approximation.

With these two approximations, we are left with a description of the fenestration in terms of the
bidirectional optical propertities of successive layers. We now proceed to make the language of
equation 3 more precise. We define the wavelength-averaged solar-optical properties of the ith
layer in a fenestration in terms of its bidirectional transmittance and reflectance distribution
functions (Nicodemus 1965) as follows:

1(6,,¢,)= Tif(ei’¢i;9i——l’¢i-—l)E(6i—l’¢i—l)’ » (4a)



where (6;,¢;)represents the outgoing direction of the radiation, (6,_,,¢,_,) the incoming direction,
and E(0,_,,¢,_,) is the irradiance (energy per unit area) incident on the front surface of the layer by
radiation going in the incident direction in the +z hemisphere. The quantity t/ is the front

bidirectional transmittance distribution function of the layer, and /(6,,¢,) is the radiance (energy

per unit area per unit solid angle) of the radiation emerging out of the back side of the layer in the
outgoing direction, which is in the +z hemisphere. In the coordinate system shown in Figure 2,
the z axis is the outward normal to the back side of the layer. We will make our diagrams with the
front sides of layers on the left, so that we will sometimes refer to radiation into the +z hemisphere
as right-moving. Layers are numbered from front to rear. Reflectance from the front side of the
layer produces an outgoing radiance, denoted by J,

J(O!,07)=p! (6],¢:6,_,,¢,_ )E(O,_,,6,,) (4b)

consisting of radiation in the reflected direction (6;,¢/), which is in the -z (“left-moving” or

“backward”) hemisphere, where p/ is the front refectance distribution function for layer i. Since

the layer cannot be assumed to be front-back symmetric, there are analogous relations for radiation
incident on the back side:

J(6], 1) =7 (0]. /301, 8/, )E" (01,1,97,.), | (40)

1(6,,¢,) = P/ (6,93 01,,. 01 )E" (6], 67, (4d)

where E" denotes the back-side irradiance from left-moving radiation in the direction (6.,,,0:.))

(the subscript denoting that this radiation comes from the i+15t layer), and 1, p? are the back

transmittance and reflectance distribution functions, respectively, of the ith layer. The incident
irradiance may be calculated from the radiance emerging from the adjacent layers as follows:

dE(O,_,¢,_,)=1(8,_,,9,_,)cos(6,_)dQ,_,, (5a)

dE"(6.,1,9:1) = J (6., 9], ) cos(6],,)dQ; (5b)

i+1?

where dQ,_, =sin(6,_,)d6,_d¢, | and similarly for dQ;,. Thus, the equation analogous to

i+l
equation 3 for calculating the irradiance emerging from a pair of layers (still without considering
interreflectances between layers) becomes

1(6,,9,) = [d2, cos(6)7] (8, 0,30, 6,)7/ (6,.6,: 60, $.)E6y. 6y, (6)
and the energy per unit area arriving at point P is simply

E(P) = [1(8,,4,)c0s(6,)dS, )



reproducing more precisely the two integrations that were indicated schematically in equation 3.

It is possible to translate this language of functions and integral equations into a more tractable
language involving matrices. The details of this translation are given in Appendix 2. Essentially,
the forward and backward hemispheres are divided into a finite grid of directions, shown in Figure
3, and the radiances and irradiances are averaged over the finite elements of solid angle associated
with each direction and placed in a column vector using the ordering indicated in the figure. This
converts angular information into position in a vector or matrix. In this treatment the radiance
function I and J become column vectors I and J, which refer to entire distributions of radiance over
outgoing angle. An equation, such as 5a, which refers to a single outgoing direction becomes a
statement about a single element in a vector. The irradiance functions E and Er likewise become

column vectors E and ET, and the (front). transmittance and reflectance distribution functions r,.f

and p; become matrices, T/ and p/, each element of which represents a biconical transmittance

(or reflectance) for a particular incident direction (row number) and outgoing direction (column
number). The integrals, such as equation 4a, in the above treatment become matrix multiplications
such as

I = Tif ‘E;_ ‘ (8)

which may be interpreted as a transmittance operator (matrix) for layer i operating on an incident
irradiance vector (from layer i-1) and converting it into an outgoing radiance vector emerging from
(the back side of) layer i. In the course of this treatment new quantities, called propagation
operators, (which are diagonal matrices) appear.” These transform radiance vectors emerging from
one layer into irradance vectors incident on the next layer, e.g.,

Ei—l =A- Ii—l' ©))

These matrices are in reality geometrical quantities associated with the partitioning of solid angle,
and hence do not depend on the layer or whether the radiation is forward-moving or backward-
moving.

In this new language equation 6 becomes the matrix equation
L=1-A-1t E, (10)

which can be read as the incident irradiance’s undergoing transmission through layer 1,
propagating to layer 2, being transmitted through layer 2 and emerging as an outgoing radiance.
(We are still neglecting interreflectances between layers.) Note that vectors and matrices are
ordered from right to left in the order in which the radiation encounters the fenestration layers.
One can think of this equation as defining a two-layer system transmittance matrix,

113 Tf

2,{1,2}

=1t)-A-1/ ¥, (11

for which

* 1t is in the appearance of these propagation matrices that this treatment differs from that of (Papamichael and
Winkelmann 1986). The reader should compare equations (9), (10), and (13) with equations (5), (7), (8) and (10) of
that reference.



L=T},, E,. (12)

The quotation marks surrounding equation 11 are intended as a reminder that it is not a correct
expression for the system transmittance because it does not include multiple reflections. In (Klems
1993B) it is shown that the correct equation for the two-layer front transmittance is

. . ) v—1 .
Té{l.z}:sz-(l—A-pf-A-pé) 'A’le’ (]3)

where the new quantity with a -1 superscript appearing is the inverse matrix of the expression in
parentheses, and accounts for the infinite series of non-specular multiple reflections between layers
1 and 2.

We have thus shown in this example how, with a few simplifying assumptions, it is possible to
develop a mathematical method for deriving the overall system transmittance matrix of a set of
layers, including all the effects of multple interreflections between layers, from the optical
properties of the individual layers. One can similarly calculate the system biconical reflectance
matrix. The directional-hemispherical transmittance as a function of angle, which is the quantity
needed for equation 2, appears (for the selected directional grid) as the elements of a row vector
given by

Tiiy=u"-A-T], . , (14)

where u” is a row vector that has each element equal to 1. Multiplying any matrix on the left by

the quantity u” - A is equivalent to an integration over the outgoing hemisphere. The system front
directional absorptance, which is the other optical quantity necessary for equation 2, similarly
appears as the elements of a row vector that can be calculated using the same method. These
calculations are carried out in detail in (Klems 1993B).

One can see from equation 13 that optical properties matrices are necessary for radiation incident on
both the front and back side of the layers, and that layers are not assumed to be symmetrical. This
means that the derivation of 13 depends only on the “input-output™ properties of the layers and not
on their internal nature. Either set of layer matrices could inself be a subsystem property matrix
describing a set of several layers (for example, N). Equation 13, then, provides the basis for
computing the transmittance of a system of N+1 layers by adding an additional layer to a known
system of N layers. It should not be surprising that it is possible to develop recursion relations that

allow one to build up system properties for an arbitrary number of layers. This is also done in
(Klems 1993B).

It is therefore possible, given the biconical properties of the component layers, to calculate the
quantities 7 ,,(6,¢) and A,(6,¢) for any fenestration system.

Conclusion

This paper has begun the description of an ASHRAE/DOE research project to define a method of
determining the solar heat gain of complex fenestration systems. It has been shown that with
suitable approximations the properties of individual fenestration layers can be characterized by
spatially averaged bidirectional (or biconical) reflectances and transmittances, and that the very
complicated integral equations governing the propagation of solar radiation through a multiple layer
system can be transformed into equations relating matrices made up from the layer properties. It



has been asserted that this technique allows the correct inclusion of multiple reflections, and
expression for the transmittance of a two-layer system has been given, and it has been asserted that
one can build up the properties of a system composed of an arbitrary number of specular or non-
specular layers using the same techniques. These assertions are substantiated in a companion
paper that discusses the mathematics of the technique more fully. Subsequent papers describing
the measurement of layer properties, the determination of inward-flowing fractions, and
comparison of the solar heat gain factors determined by the method with calorimeter measurements
are planned.
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Fig. 1. Transmission of Radiation Through a Generalized
Optical System. (A) Radiation may arive at an arbitrary
point P from various points Y, Y’. (B) Fixing the
scattering direction at each point defines the translated
image point P’. (C) For a system consisting of multiple
layers, the path to the translated image point P’ is an
optical path parallel to the original one.



plane of
incidence

Fig. 2. Definition of the Coordinate Systems for a Layer. The
incident irradiance E(6,_,¢,_,) and the forward-going (i.e.,
transmitted) radiance I(6,,¢;) are described in the xyz
coordinate system, while the backward-going (i.e., reflected)
radiance J(0;,¢;) is described in the reflected coordinate system
xTy'zf, which is left-handed. All quantities with a superscript r
refer to the latter. For the general case / and J may have any

direction in their respective hemispheres, as indicated. For
specular radiation both I and J would lie in the plane of

incidence, with 8, = 6,. Note that the forward and backward

coordinate systems are related by a reflection through the xy
plane, so that in that plane they represent the same two spatial
axes viewed from opposite sides.



(A)

Fig. 3. Angle Coordinates for Incident, Transmitted
and Reflected Rays. (A) Coordinates for incident
and forward-going radiation. The angles are refered
to the xyz coordinate system of Fig. 2; in this figure
the z axis is perpendicular the plane and points
toward the viewer. The numbers indicate the
ordering of directions in constructing vectors and
matrices. (B) Coordinates for backward-going
radiation. The angles are refered to the xTyTzf
coordinate system in Fig. 2; the zI axis points out of
the plane of the figure.



Appendix 1. Effect of Spectral Averaging

The energy transmitted by a pair of layers (neglecting layer interreflectances for simplicity) for
radiation with a spectral density I(A) (energy per unit wavelength) will be given by

Iy = [dA-T,()- T, (A)- 1(A). (AL.1)
If we denote the wavelength-integrated incident radiation by
Iy=[dr-1) (A1.2)

and define the spectrally-integrated mean transmittance of each layer by
(Tl>:—11—'fd)L-Tl(/l)-1(A) (A1.3)
0

for layer 1 and a corresponding expression for layer 2, and if we define the spectrally-integrated
mean transmission of the pair of layers by

(T,-T2>:Iijd/1-T,(A)-TZ(A)-I(A), (A1.4)

then to replace the wavelength-by-wavelength treatment of transmission by a wavelength-averaged
one, it must be true that

(TI'T2>:<Tl>'<T2>' (A1.5)

We must therefore inquire under what conditions equation A1.5 fails.

It is easy to see that if one of the transmissions is a constant, equation A1.5 will always hold. If,
for example, T1(A)=Tj0, a constant, then the constant factors out of equation A1.3, leaving
(T,) =T, and also out of the integral in equation A1.4, leaving (T, -T,)=T,,-(T,). On the other
hand, it is also easy to construct a case where the relationship fails. For example, let Aq be the
median wavelength of the incident spectrum, and suppose that T} is equal to one for A<Ag and zero
otherwise, while T7 is equal to zero for A<h(, and otherwise is equal to one. Then we would have
(T,-T,)=0, while (T,)=(T,) = 1. From this admittedly artificial case, we see that equation A1.5
fails when there is more than one selective layer in the system if the selective layers have their peak
transmission in very different spectral regions.

More generally, if one of the layers is selective and the other layer has an average transmission in
the transmission region of the selective layer that is different from its average transmission over the
full spectral region, then equation A1.5 will fail and a spectral characterization of each layer (or,
alterternatively, a non-spectral measurement of the combination) will be necessary.



