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1. ABSTRACT 

Selecting the model is an important and essential step in model based fault detection and diagnosis 
(FDD). Several factors must be considered in model evaluation, including accuracy, training data 
requirements, calibration effort, generality, and computational requirements. All modeling approaches 
fall somewhere between pure first-principles models, and empirical models. The objective of this 
study was to evaluate different modeling approaches for their applicability to model based FDD of 
vapor compression air conditioning units, which are commonly known as chillers.  
 
Three different models were studied: two are based on first-principles and the third is empirical in 
nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), 
and a modified version of the ASHRAE Primary Toolkit model, which are both based on first 
principles. The DOE-2 chiller model as implemented in CoolToolsTM was selected for the empirical 
category. The models were compared in terms of their ability to reproduce the observed performance 
of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 
and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used 
to calibrate the Toolkit model. The "CoolTools" package contains a library of calibrated DOE-2 
curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 
model.   
 
All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng 
model has the advantage of being linear in the parameters, which allows more robust parameter 
estimation methods to be used and facilitates estimation of the uncertainty in the parameter values.  
The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are 
also available. The DOE-2 model can be expected to have advantages when very limited data are 
available to calibrate the model, as long as one of the previously identified models in the CoolTools 
library matches the performance of the chiller in question. 
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2. INTRODUCTION 

2.1 PROJECT GOAL 

The ability to detect faults in equipment can result in reduced energy, maintenance costs, and 
extended equipment life. Model based fault detection begins with selecting a model of the physical 
system. This project evaluated various models for vapor compression refrigeration units (commonly 
known as chillers). The models were compared using various criteria such as prediction accuracy, 
calibration effort, and training data requirements, usefulness of parameters, computational 
requirements, and generality of the model. Fault detection and diagnostics (FDD) and various 
modeling approaches are described in more detail in this section. 

2.2 BRIEF DESCRIPTION OF FAULT DETECTION AND DIAGNOSIS 

The field of fault detection and diagnosis (FDD) applied to heating, ventilating, air conditioning and 
refrigerating (HVAC&R ) systems is relatively new. Interest in the HVAC&R field has lagged behind 
others, primarily because of the high cost to benefit ratio, compared to other industries. (Braun, 
1999). Within engineering fields, it first originated in the chemical and nuclear industries. In these 
industries, the driving forces have primarily been safety and quality control. Within mechanical 
engineering, it has been applied to automotive, fluid, combustion and HVAC&R systems (Issermann, 
1997). FDD involves two steps: detecting that a fault is present, then isolating and diagnosing it. 
Faults can be classified as either degradation or abrupt faults. In HVAC&R  systems, an example of a 
degradation fault is the gradual leakage of refrigerant from an air conditioning unit, which increases 
energy use. An abrupt fault could be the failure of a sensor, or the breaking of a fan belt. These faults, 
unlike degradation faults, are immediately detectable. FDD can be as simple as monitoring and 
comparing sensor readings to a threshold. Model-based FDD automates the fault detection process, 
reducing the need for manual inspection of performance data. Figure 2.1 describes the general process 
of model-based fault detection: 

Figure 2.1. Model Based Fault Detection Overview 
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The inputs are sensor measurements or control signals. The model processes the measured data and 
generates an output, which is then compared to the actual output from the system. Residuals, or 
innovations beyond a pre-determined threshold indicate the presence of a fault. The selection of the 
model is an important step, that governs the accuracy of fault detection. This project focused on the 
selection of a model for FDD of water cooled vapor compression refrigeration units, commonly 
known as chillers. Specifically, three models were studied to assess their applicability to model-based 
FDD of chillers.  

2.3 CATEGORIES OF MODELS  

Models can be classified into two broad classes: empirical (black-box), and analytical (physical or 
first principles).  
 
Empirical models do not incorporate any kind of prior knowledge of the system. Examples of 
empirical models include polynomial curve fits, and artificial neural networks. An advantage of 
empirical models is that detailed physical knowledge of the system is not necessary. A disadvantage 
is that the model is reliable only for operating points within the range of the training data, and 
extrapolation outside this range may lead to significant error. In order to properly train the model, 
adequate training data are required; the richer the data, the more accurate the model predictions. 
 
Analytical or physical models, also known as white-box models are largely based on the laws of 
physics. Physical models may require less training data, since the model should be valid at all 
operating conditions for which the assumptions inherent in the model are valid. A disadvantage is that 
a good understanding of the physical phenomena is necessary for an accurate model, which is not 
always available. It is nearly impossible to model a system perfectly, and in addition, ‘unmodeled 
disturbances’ contribute to the inaccuracy of the model.   
 
In practice, a model may be partly empirical, and partly based on first principles.  (Haves, 1999) 

2.4 APPROACHES TO MODELING IN HVAC&R  SYSTEMS 

There are two main approaches to model-based FDD of HVAC&R  systems: the whole building (top-
down) level approach, and component level (bottom-up) approach. The whole building approach 
focuses on the energy consumption of the whole building, and major systems (such as chilled water, 
lighting, fans). Actual energy consumption is compared to the expected consumption, based on a 
whole building simulation program1. The component level approach focuses on modeling individual 
pieces of equipment, or local systems. Actual performance is compared to the baseline performance, 
which is the model predictions based on either manufacturer's data, or training data acquired during 
correct operation.  
 
In actual implementation, an FDD scheme may link the two approaches. While the whole-building 
approach may be more simple, it is not sufficient to localize the actual fault. The component level 

                                                      
1 Such as the DOE-2, or Energy-Plus simulation programs developed by Lawrence Berkeley National Laboratory.  
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approach has the advantage of relating the faults to a specific piece of equipment or system, but is a 
more complex approach. (Haves, 1999)    

2.5 MODELING CONSIDERATIONS 

The selection of a model is based on a variety of factors. Eventually, these techniques will be 
deployed in commercial buildings, with the intent to save energy, and improve occupant comfort. 
With this in mind, the following factors should be considered in the selection of the model: 
 
¾ accuracy  
¾ calibration effort and training data requirements 
¾ computational scheme 
¾ physical relevance of parameters (for physical models) 
 
As with any kind of model, accuracy is important. Moreover, in FDD applications, it is important that 
'false alarms' are not generated. That is, the detection routine must be robust such that only real faults 
are detected. This requires that the model is able to predict operation within small error.   
 
Calibration of the model is a critical step. The more limited the range of conditions for which training 
data are required, the more quickly and easily these data can be obtained. Unlike in a laboratory 
setting, existing building equipment cannot be tested at will. Although computational load is not 
usually a problem, the estimation of the values of the parameters of a model that is both non-linear in 
the inputs and non-linear in the parameters can be both slow and uncertain.   
 
When physical models are used, the parameters obtained through calibration should be physically 
meaningful. For example, if their values suggest the presence of a fault, not only is a fault detected, 
but the cause of the fault may be more easily identified. 

2.6 SELECTED MODELS 

The objective of this study was to validate various chiller models using operating data from real 
chillers. The three following steady-state chiller models were selected for this study: 
 
1) ASHRAE Primary HVAC&R Toolkit Model (Bourdouxhe et al. 1997) 
2) Gordon-Ng Universal Chiller Model (Ng et al. 1997)  
3) CoolTools/ (DOE-2) Model (Pacific Gas and Electric, 1996) 
 
The first two models were selected because they are both physical models, and differ in their 
formulation and structure. The Primary Toolkit model is a component model, which is based on 
thermodynamic (first law) and heat transfer relationships, whose equations are solved in an iterative 
manner. The Gordon-Ng Universal model is based on both the first and second laws of 
thermodynamics, and uses heat transfer relationships as well. However, it is not a component model, 
but uses a systems approach, and the model structure provides a simple, explicit solution. The DOE-2 
model is an empirical model based on polynomial curve fits, which relate the efficiency, capacity, and 
energy consumption to the operating conditions.  
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At this point, it is useful to distinguish between steady-state and transient models. The models 
selected are all steady-state models, and could not be applied to data obtained during transient 
operation. Examples of transient operation are start-up and shutdown. Mathematically, steady-state 
models consist of algebraic equations, while transient models consist of differential equations.  
 
The model selection was limited by the kind of measurements and information available for the 
chillers studied. For example, detailed heat exchanger dimensions were not available for the building 
chiller. Refrigerant temperature and pressure measurements were also unavailable for the building 
chiller, and are not generally available on-line, although this is slowly changing.  
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3. OVERVIEW OF VAPOR COMPRESSION CHILLER MODELS 

The objective of this study was to compare various types of vapor compression chiller models for the 
purpose of fault detection and diagnosis. Fault detection and diagnosis (FDD) as a general subject is 
vast. It was determined that a thorough literature review of this subject is not only a challenging 
endeavor, but outside the scope of this study. Therefore, this section is limited to a discussion of the 
types of chiller models, and if applicable, their use in fault detection schemes.  
 
Section 2.3 briefly described the broad approaches to modeling, which included first-principles or 
physical models, and empirical models. The next few sections describe four different chiller modeling 
approaches, two within each of these categories. The physical component modeling section is by no 
means comprehensive in the various nuances to compressor and heat exchanger modeling, but is 
intended to give a flavor of the issues and general approaches to component modeling.  

3.1 PHYSICAL COMPONENT MODELS  

3.1.1 OVERVIEW 

In general, the chiller component modeling approach considers each component in the refrigeration 
cycle and applies mass, momentum and energy balances. Browne et. al (1998) reviewed the existing 
approaches to steady state and transient chiller modeling (physical). No transient chiller models were 
found, which remains to be an unsolved problem for the HVAC industry. Various steady-state 
modeling approaches along with their limitations were discussed in the paper, and are summarized 
below. 
 
COMPRESSORS: In general, compression is assumed to be polytropic2, and the motor is considered 
to be constant speed. The volumetric efficiency, which is assumed constant, or based on 
manufacturer’s data, and inlet conditions were used to calculate mass flow rate. Alternatively, an 
isentropic efficiency is assumed to determine outlet conditions. In a simpler approach, manufacturer-
supplied empirical curve fits are used for component models. More complex models consider heat 
losses and gains through the compressor shell, motor efficiencies, and pressure drops through the 
intake and exit valves. 
 
HEAT EXCHANGERS: The majority of chillers contain an evaporator and condenser of a shell and 
tube configuration, with the water in the tube, and refrigerant in the shell. The tube may have multiple 
passes. Traditionally, an effectiveness, or NTU method has been used. The effectiveness is defined 
as ratio of actual heat transfer to the maximum amount of heat transfer that would occur, if the heat 
exchanger has infinite surface area. Often, an isothermal heat exchanger is used.3 However, it is 
limited to the phase-change regions. A more accurate approach assumes separate overall-heat transfer 
coefficients for the superheating (evaporator), desuperheating, and subcooling (condenser) regions. 

                                                      
2 pvn=constant 
3 ε = 1-e-NTU 



 

Masters Project – Plan II 7 Priya Sreedharan 

This approach treats the heat exchanger as two (evaporator) or three (condenser) variable sized heat 
exchangers, of which the total area is known. Another common approach is the log mean temperature 
difference (LMTD) method, where the heat transfer is the product of the LMTD, overall heat transfer 
coefficient and area.4  
 

fluid.colder   theof res temperatuexiting and entering  theare T ,T

and fluid,hot   theof res temperatuexiting and entering  theare T ,T

,

)(

)(
ln

LMTD 

coci

hohi

where

TT

TT

)T(T)T(T

ciho

cohi

cohiciho









−
−

−−−
=

 

 
This approach is a good representation of a classical heat exchanger if both superheating and 
evaporation are considered in the evaporator, and likewise, desuperheating, condensation, and 
subcooling are considered in the condenser. In counterflow heat exchangers, the heat exchanger can 
be divided into the various regions of heat transfer; then the overall heat transfer coefficients for each 
region can be determined. In shell and tube heat exchangers, these different regions are not well 
defined. If the evaporator is assumed to include only evaporation, then the LMTD expression is 
further simplified.  
 
Mathematically, the relationship between heat transfer and the overall heat transfer coefficients are 
identical, however the difference appears in how they are used to estimate the heat transfer 
coefficients. Normally, the NTU method uses convection correlations to estimate directly the overall 
heat transfer coefficients; the LMTD method provides a simple method to estimate the overall heat 
transfer coefficient using fluid temperatures, and avoids the details of convection. 
 
Lastly, the elemental methods approach divides the heat exchanger into smaller discrete elements, or 
control volumes, and solves the mass and energy equations for each control volume. This approach is 
rarely used to model shell and tube heat exchangers.  
 
EXPANSION VALVE: The two most common expansion valves used in chillers are float valves and 
thermostatic expansion valves. While the control mechanisms and geometry differ, the expansion 
process is universally modeled as an isenthalpic process. Manufacturers’ data can be used to develop 
empirical models for the mass flow rate. Alternatively, basic fluid mechanics can be used to relate the 
mass flow rate to the pressure drop cross the valve.  
 
SOLVING THE EQUATIONS: Steady state models, which consist of a set of algebraic equations, can 
be solved in an iterative process. Derivative based techniques, such as newton-raphson method 
increase the efficiency of the algorithm. (Many equation solving programs are available as well, such 
as SPARK and Engineering Equation Solver, which automate the iterative process mentioned above.) 
Transient models requiring the solution to differential equations, can be solved through numerical 
integration (e.g., Euler method, which is a simple first order method).  
 
Three different approaches to component modeling of chiller are discussed below. 

                                                      
4 Q=UA(LMTD) 
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3.1.2 ASHRAE PRIMARY HVAC 1 TOOLKIT 

The Toolkit model (Bourdouxhe, 1994), which will be described in more detail later in this report, is 
a component modeling approach, with some simplifications to the component models. The heat 
exchangers are treated as “black-boxes”, where the flow configuration, and areas of the heat 
exchanger are not used to estimate the overall heat transfer coefficients. Rather, the heat transfer 
coefficients, and other parameters were found during the calibration, and are selected based on 
finding the best fit values. Each heat exchanger is assumed to only undergo phase change, neglecting 
sensible heat transfer. The NTU method was used to estimate heat transfer. The inefficiencies in the 
compressor are modeled as linearly proportional to the compressor power. These losses, are assumed 
to sensibly heat the refrigerant. Reciprocating, screw and centrifugal component models are presented 
for the compressors; the difference between the three is reflected in the parameters used to estimate 
the volumetric flow rate through the compressor. Expansion is modeled as an isenthalpic process. The 
Toolkit model, once calibrated, only requires inlet water conditions, and refrigerant property data to 
predict evaporator load, compressor power, condensing and evaporator pressures, and condenser heat 
transfer. 
 

3.1.3 PURDUE COMPONENT MODEL APPROACH  

A steady state model of a chiller was developed in order to lay the foundation for a dynamic chiller 
model. (Comstock, 1999, Braun, 2000) Again, the NTU method is used to estimate heat transfer in 
the heat exchangers. However, the more accurate method, where phase change, and sensible heat 
transfer are considered separately is employed. The heat transfer coefficients for both the phase 
change, and sensible heat transfer sections are calculated using the geometry, thermo-physical 
properties of the fluids, and well known empirical relationships. The area fractions of the different 
modes of heat transfer are outputs of the model. Using both water measurements, and refrigerant data, 
the heat transfer, output water temperature, fractional areas for the different modes of heat transfer 
(i.e., condensing and subcooling, or evaporating and superheating), outlet refrigerant enthalpy, and 
subcooling/superheating are outputs of the model. The compressor is modeled using both a polytropic 
and electromechanical efficiency. An empirical relationship is used to relate the polytropic efficiency 
as a function of power, and the electromechanical efficiency is assumed constant. Expansion was 
modeled as an isenthalpic process. Each component model is calibrated individually, and an overall 
system model linked the components, and applied overall energy balances. The overall system model 
requires only inlet water temperatures and flow rates, and evaporator load (along with refrigerant 
property data) to predict compressor work, evaporating and condensing pressures, and condenser heat 
transfer. 
 

3.1.4 ASHRAE PROJECT #1139-RP 

The objective of this currently ongoing project is to develop online training methods for model based 
fault detection in chillers. (Reddy et. al, 2000) Consequently, a variety of chiller models was studied, 
including a component based modeling approach, which is described here. This approach follows the 
recommendation of the ASHRAE equipment handbook. The LMTD method is used to estimate the 
product of the overall heat transfer coefficient and area (UA) for the heat exchangers. The compressor 
is modeled using a variable electromechanical efficiency, and polytropic efficiency. The polytropic 
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efficiency is dependent, among other things, on empirical relationships obtained from the 
manufacturer. As usual, the expansion valve is modeled as an isenthalpic process, and is modeled 
using basic fluid mechanics (i.e., mass flow rate proportional the square root of the pressure 
differential).  

3.2 PHYSICAL PARAMETER ESTIMATION MODELS 

The Gordon and Ng models described below are still based on the physics of the refrigeration cycle, 
but are manipulated into simple linear relationships, for which refrigerant data and thermo-physical 
properties are not required. In contrast to the previously described component models, the Gordon-Ng 
models may be regarded as a system models. 

3.2.1 GORDON- NG UNIVERSAL CHILLER MODEL (FIRST GENERATION) 

The first version of the Gordon and Ng universal chiller model was a physical model with empirical 
relationships to represent the variation of irreversibility with temperature. It was based on both a 
system energy and entropy balance. An overall heat exchanger effectiveness was used to relate the 
refrigerant and water temperatures to the heat transfer in the heat exchangers . Algebraic manipulation 
resulted in a linear relationship between the inverse of the coefficient of performance (COP) and 
inverse of the evaporator load. (Gordon, 1995…) Stylianou and Nikanpour (1996) used this model for 
a reciprocating chiller. The model was used only for fault detection purposes, not fault diagnosis, and 
for steady state operation. Diagnosis was performed using a rules-based approach. The measured data 
included condenser and evaporator water temperatures, and compressor power.  
 
Brandemuehl (1996) used this model for in-situ testing of chillers. Two centrifugal chillers were 
tested, and calibrated to the model. The model was used at two levels: the first ignored temperature 
variations in evaporator and condenser water, and simply regressed the inverse of COP with the 
inverse of evaporator load. The second mode incorporated the empirical relationships between 
irreversibility and condenser and evaporator temperatures. It was interesting that these empirical 
relationships, which had been tested on reciprocating chillers, were able to calibrate data from a 
centrifugal chiller. 
 

3.2.2 GORDON- NG UNIVERSAL CHILLER MODEL (SECOND GENERATION) 

The second generation model, while based on the same concepts, restructured the model such that the 
parameters found have physical relevance (versus the parameters in the first generation model that are 
based on an empirical relationship between irreversibility and temperature). The result is a 
relationship that is linear with these physically meaningful parameters. This model is currently being 
investigated by the Reddy et. al (Reddy, 2000) as part of ASHRAE project 1139-RP, and was also 
investigated in this project.  
 
More details of the model are given in Section 5.2, however, Gordon and Ng discuss some interesting 
thermodynamic phenomena of chillers worthy of discussion here (Gordon, 2000). Interestingly, the 
total internal entropy generation remains constant across different cooling loads, and operating 
temperatures. An example is in centrifugal chillers, where partial closing of the inlet guide vanes 
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achieves part-load conditions (i.e., lower cooling loads).  A qualitative explanation is provided, where 
the decrease in refrigerant mass flow rate at part-load conditions, is compensated for by an increase in 
specific entropy generation, such that total entropy generation remains constant. While this is not 
valid for all chiller types (e.g., it is not valid for thermoelectric chillers, or screw-compressor chillers), 
it appears to be valid for both reciprocating and centrifugal chillers.  
 
This model is discussed in more detail in Section 5.2. 

3.3 ARTIFICIAL NEURAL NETWORKS  

Comstock (1999) conducted a comprehensive literature search of vapor compression FDD studies, 
which by necessity included a discussion of the modeling approaches used in the fault detection 
scheme. Two FDD studies using artificial neural networks were described in this report. 
 
In her thesis, Bailey trained artificial neural networks (ANN) using both faulty and faultless data from 
a screw chiller. The independent variables were fault degree and evaporator load. These were varied 
to study the effect on the dependent variables: energy consumption, chilled water supply temperature, 
superheat and subcooling temperatures, suction pressure, and discharge pressure (the latter four were 
refrigerant data). The faults simulated were refrigerant loss and overcharge, oil loss and overcharge, 
condenser fouling, and loss of an air-cooled condenser fan. The ability of the neural network to 
classify these faults was difficult to deduce from the results. The best model presented had a 
misclassification rate of 20%.  
  
Peitsman and Bakker (1996) used autoregressive (ARX) and artificial neural network (ANN) models. 
The former models are linear in the input data, while the latter combine the input data in a non-linear 
fashion. The models were trained using laboratory chiller data. Modeling at the system level was used 
to detect a fault, and models at the component level were used to isolate the fault. The ANN 
performed slightly better than the ARX in modeling various output conditions, which can be 
attributed to the non-linearity of the system (i.e., ANN models are better suited to address non-
linearity). Only one fault was demonstrated: detecting air in the refrigerant using the discharge 
refrigerant pressure. 

3.4 POLYNOMIAL CURVE FITTING 

3.4.1 DOE-2 MODEL 

The DOE-2 model was developed by the Department of Energy as a tool to help guide architects, and 
engineers to design more energy efficient buildings. Within the DOE-2 program is a chiller module 
that simulates chiller performance. The DOE-2 chiller model (hereafter referred to as DOE-2 model) 
consists of three polynomial curves. They describe how the cooling capacity of the chiller varies with 
temperature (inlet evaporator and inlet condenser), how the efficiency (kW/ton) of the chiller varies 
with temperature, and how the power consumption varies at part load conditions. They are empirical 
in the sense that the polynomial structure is not based on physical relationships. However, the model 
is somewhat a grey-box model, since the final power prediction of the chiller is based on physically 
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meaningful quantities obtained from the polynomial curves. An assumption the model makes is that 
evaporator and condenser water flow rates remain constant.  
 
This model was the basis of the CoolTools project, of which the objective was to optimize the 
operation of chilled water plants. The project included the collection of chiller data from existing 
buildings for different types of vapor-compression chillers. The DOE-2 model parameters were found 
for these chillers, and are included in a library of curves contained in the CoolTools software. The 
CoolTools software, is presented by PG&E as a tool to calibrate the DOE-2 models, and thus predict 
chiller performance at different operating conditions. (PG&E, 1997). 
 
Meyers (1996) calibrated the DOE-2 curves, using manufacturer’s data, and compared the actual 
performance of the a screw chiller to the expected performance. The DOE-2 model acted as a useful 
commissioning agent, and helped identify fouling in the condenser water line.  
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4. ASHRAE PRIMARY TOOLKIT COMPONENT CHILLER MODEL 

4.1 INTRODUCTION 

The Primary HVAC Toolkit is a collection of first principles models for a variety of heat and cooling 
equipment, such as boilers, various types of vapor-compression chillers, absorption chillers, cooling 
towers, and gas turbines. The vapor-compression chiller models include algorithms for centrifugal, 
reciprocating, and screw type compressors. Apart from the differences in the compressor, the 
remaining components of vapor-compression chillers (hereafter referred to as 'chillers') are similar. 
These include the expansion device, evaporator and condenser. The chiller model contains four 
component models, each for the evaporator, compressor, condenser, and expansion device, 
respectively.  
 
In contrast to the other selected models, the ASHRAE Toolkit model was not formulated specifically 
for the purpose of fault detection and diagnostics work. Rather, the model is used to test the ability of 
the chiller to reach various chilled (evaporator) water setpoints, and under what control mode, for the 
given operating conditions. (Bourdouxhe, 1994) That is, for specified inlet condenser and evaporator 
water temperatures and flow rates, can a particular setpoint be realized, and if so, how much power 
does the compressor consume; and, is the chiller operating in full-load or part-load conditions? This 
formulation was not convenient for this project, particularly because the calibration required only 
full-load data, which was unavailable. The model was restructured, and the computational scheme 
made more efficient with the secant method. The main physical concepts were retained. The original 
model, calibration routine, and computational scheme is first described, followed by a description of 
the modifications made for this study. 

4.2 COMPONENT BY COMPONENT 

The Toolkit offers several different subroutines. These subroutines differ only in the way they model 
the compression stage.5 The ideal refrigeration cycle consists of four processes, which are listed with 
the respective component in brackets. (Cengel, 1994) 
 
1-2 Isentropic compression (Compressor)  
2-3 Isobaric desuperheating, phase change from vapor to liquid, and subcooling (Condenser) 
3-4 Isenthalpic expansion (Expansion Device) 
4-1 Isobaric evaporation, and superheating (Evaporator) 
 

                                                      
5 Compression depends on the compressor type. For example, the reciprocating compressor models 

ideal throttling prior to the compression stage, and ideal throttling after exiting the compressor. The centrifugal 
compressor only adds throttling prior to compression stage. Furthermore, there are different subroutines based 
on whether the chiller is at full load, or part load conditions. See the documentation for more detail. 
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The modeling concepts, including the assumptions made are described for each component. Let us 
first consider full-load operation, that is, the chiller is cooling the evaporator water to the lowest 
temperature it possibly can. Part-load operation is modeled slightly differently, and is discussed later.  
 
COMPRESSOR: Compression, at full load is assumed as isentropic for all compressor types. The 
electromechanical losses from the motor/transmission system are assumed to be a combination of a 
constant loss and a loss proportional to the compressor power. These losses are assumed to heat the 
refrigerant sensibly before it enters the compressor, and are not considered as losses to the 
environment. In fact, the model assumes that no energy leaks between the refrigerant and the 
environment. The compressibility factor is used in modeling the refrigerant, which is otherwise 
treated as an ideal gas. 
 
CONDENSER: Heat transfer in the condenser is assumed to be isothermal, that is, the refrigerant only 
undergoes phase change. Therefore, desuperheating after exiting the compressor as well as 
subcooling are neglected, and lumped into the isothermal heat transfer phase. The NTU-effectiveness 
relationship is used to model the heat transfer assuming an infinite capacity on the refrigerant side. 
The overall heat exchanger effectiveness is one of the parameters determined in the calibration 
routine. As a result of neglecting the sensible heat transfer, the heat transfer coefficient is artificially 
inflated. As is common to most heat exchanger analysis, the process is assumed to be isobaric. The 
refrigerant is assumed to exit at the saturated liquid state. 
 
EXPANSION DEVICE: The expansion device assumes an isenthalpic process. This assumption, as 
described in Section 3, is a common assumption in most chiller models. 
 
EVAPORATOR: Like the condenser, heat transfer in the evaporator is modeled as an isothermal 
process, neglecting superheating prior to compression. The refrigerant is assumed to exit as a 
saturated vapor. (Bourdouxhe, 1994) 
 
Table 4.1 contains a list of symbols used in the model. These symbols will be used consistently 
throughout the remainder of the report.  
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Table 4.1. List of Symbols 

Symbol Description Units 
Tei Evaporator inlet temperature of water K 
Teo Evaporator exit temperature of water K 
Tci Condenser inlet temperature of water K 
Tco Condenser exit temperature of water K 
z Ideal gas compressibility factor -- 
Me Mass flow rate of water through evaporator kg/s 
Mc Mass flow rate of water through condenser kg/s 
Cpw Specific heat of water J/kg/K 
T1 Evaporating temperature of refrigerant (assumed to be isothermal) K 
T1p Temperature of refrigerant after being superheated by the motor, prior to 

compression 
K 

Qe Heat transfer from water to refrigerant in the evaporator J/s 
P1 Evaporating pressure of refrigerant  Pa 
hfg Enthalpy of vaporization of refrigerant J/kg 
dhfg Enthalpy of vaporization at the evaporating temperature J/kg 
h1 Enthalpy of refrigerant exiting evaporator (saturated vapor) J/kg 
T3 Condensing temperature of refrigerant (assumed to be isothermal) K 
Qc Heat transfer from refrigerant to water in the condenser J/s 
P2 Condensing pressure of refrigerant Pa 
Wlo Constant portion of electromechanical losses of motor W 
α Portion of electromechanical losses proportional to compressor work -- 
V Volumetric flow rate of refrigerant through compressor m3/s 
v1p Specific volume of refrigerant entering compressor m3/kg 
Mref Mass flow rate of refrigerant  kg/s 
A,B Refrigerant constants in the Clausius Clapeyron equation --, K 
Tc, Tb, To Refrigerant critical, boiling, and reference temperatures K 
hfo Enthalpy at reference temperature of the refrigerant J/kg 
h3 Enthalpy of refrigerant exiting  condenser (saturated liquid) J/kg 
Pcomp Power input to compressor W 
Win Useful work input to the compressor W 
Wis Isentropic work input to the compressor W 
εe Evaporator heat exchanger effectiveness -- 
εc Condenser heat exchanger effectiveness -- 
UAe Overall heat transfer coefficient of the evaporator W/K 
UAc Overall heat transfer coefficient of the condenser W/K 
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4.2.1 COMPONENT EQUATIONS 

All component models represented below are universal to all chiller types, but for the compressor 
volumetric flow rate (4.8), which is dependent on compressor type. (The compressor volumetric flow 
rate is not shown in detail for this reason.) 
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In addition, an energy balance on the refrigerant is used. Note, this assumes that all motor losses 
result in sensible heat transfer to the refrigerant, and therefore, the power to the compressor is 
considered (rather that useful work input). 
 

(4.20)   cQPQ compe =+  

4.3 COMPUTATIONAL SCHEME - FULL LOAD OPERATION  

The proposed full load model structure is as follows. The description is general and is intended to 
give the reader an adequate overview of the model.  
 
Model inputs: Tei, Tci, refrigerant properties, parameters  
Loop 1  (Evaporator Model) 

1) Estimate T1 using 4.2 
2) Calculate P1 using 4.5 
3) Calculate dhfg using 4.6  
4) Calculate h1 using 4.7 
 
Loop 2 (Condenser Model) 

1) Estimate T3 using 4.15  
2) Calculate P2 using 4.17 
3) Calculate h3 using 4.18 
4) Assign an initial value to T1p 
 
Loop 3 (Compressor Model)  

1) Calculate V using 4.86 
2) Calculate v1p using 4.10 
3) Calculate Mref using 4.9 
4) Calculate Win using 4.11  

                                                      
6 These are dependent on the compressor type.  
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5) Calculate Pcomp using 4.12 
6) Calculate T1p using 4.13 
7) Exit Loop 3 when converged on T1p 

End of Loop 3 
 
5) Recalculate Qc using 4.20 
6) Exit Loop 2 when converged on Qc 

End of Loop 2 
 
5) Recalculate Qe using 4.3 and 4.18  
6) Exit Loop 1 when converged on Qe 

End of Loop 3 
Model Outputs: Teo, Tco (both calculated using 4.1 and 4.14 respectively), Pcomp 

4.4 PART LOAD VARIATIONS 

At full-load the chiller is cooling the evaporator water to the lowest possible temperature. The 
“chilled” water setpoint determines how hard the chiller must work in order to deliver the required 
cooling load. If the chiller does not have to work as hard to achieve a certain setpoint, then it is 
operated at part-load. At part-load, the refrigerant flow rate is reduced, which reduces the cooling 
capacity of the chiller. The refrigerant flow rate reduction is achieved in different ways: if the motor 
is variable speed, then a reduction in the rotational speed will result in a decrease in refrigerant flow 
rate. The other method is to change the volumetric displacement. For example, in reciprocating 
compressors, cylinders are unloaded. In centrifugal compressors, inlet guide vanes are partially closed 
to restrict flow.  
 
The Toolkit incorporates only the latter method, and not variable speed motors (although, this would 
not be a difficult to incorporate by the user). For reciprocating compressors, the number of unloaded 
cylinders is specified (or estimated), and closely resembles the actual part-load mechanism. In 
centrifugal compressors, however, the inlet guide vane restriction is modeled as a throttling process 
prior to compression. The throttling reduces the pressure of the refrigerant, thus, increasing the 
specific volume (decreasing the density). This, in turn combined with the ‘full-load’ volumetric 
displacement, that is specified by the compressor configuration results in a reduction in refrigerant 
mass flow rate.   

4.5 CALIBRATION OF ORIGINAL TOOLKIT MODEL 

The toolkit requires several parameters, including the heat exchanger coefficients (UAe and UAc), 
compressor loss parameters (Wlo, α), as well as the compressor specific parameters that determine the 
volumetric displacement.7  
 
The toolkit contains a variety of parameterization routines, depending on the available data. In order 
parameterize a centrifugal chiller, the data required are: evaporator load, compressor power, inlet and 

                                                      
7 For centrifugal compressors, these other parameters are based on the “Velocity Triangle” of the impeller, which 

includes the tangential velocity of  impeller (U), and the absolute velocity of the fluid (C). 
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exit water temperatures, and water flow rates, all at full load.8 The heat exchanger parameters (UA’s) 
are initially estimated by assuming a temperature difference of 5 K between the chilled water 
temperature and refrigerant (Teo-T1) and condenser outlet water temperature and refrigerant (T3-Tco). 
With the knowledge of the heat exchanger parameters, the effectiveness, and condensing and 
evaporating temperatures are calculated for each operating point. The refrigerant mass flow rate, and 
isentropic compression work to the compressor are directly calculated. Using this information, the 
compressor loss terms are estimated using linear regression. The remaining compressor parameters 
are calculated by a search method, such that the error between the estimated and measured 
compressor power is minimized. Finally, the heat exchanger parameters are recalculated at a fictitious 
operating point that is characterized by the average values of the evaporator load, condenser load, and 
water flow rates. (Bourdouxhe, 1994) 

4.6 MODIFICATIONS TO THE MODEL AND COMPUTATIONAL SCHEME 

The original Toolkit model’s purpose is to determine if a particular evaporator setpoint was 
achievable under specified operating conditions, and if so, by how much power. In addition, the 
calibration of the centrifugal chiller required full-load data. In contrast, the purpose of this paper was 
to compare the diagnostic capability of the Toolkit model. Particularly, at a given chiller evaporator 
load, could the compressor power consumption be accurately predicted. In addition, neither of the 
data sets obtained had significant number of full-load data. The modifications made to the original 
model, and computational scheme converted the Toolkit to the desirable form, that is not dependent 
on the control mode (i.e., full-load, part-load), nor on the compressor type, and can be calibrated with 
part-load data.  
 
The compressor loss relationship (4.12), which relates useful work input to compressor power is valid 
for all compressor types. The only equation presented in the full-load routine that is not universal to 
all compressor types is volumetric displacement (4.8). If the compressor power is known, and is used 
as an input to the model, then the refrigerant mass flow rate, and evaporator load can be calculated, 
using (4.12) and (4.11). The volumetric displacement relationship, therefore, is not required.  
 
One assumption was made with this restructuring: Recall, the part-load operation is modeled as a 
throttling process prior to compression. This pressure drop results in an increase in the specific 
volume of the refrigerant, which in turn achieved a reduced refrigerant flow rate. The reduced or 
"part-load" refrigerant flow rate was then used to compute work input to the compressor. Since the 
original model structure maintained both compressor power and evaporator load as 'outputs', this 
"throttling" was the only way to force part-load conditions (i.e., reduce refrigerant mass flow rate). 
However, with this restructuring, where compressor power is used as an input, and evaporator load is 
predicted (or vice versa, where evaporator load is the input, and compressor power is the output to 
match the other models). In computing refrigerant flow rate from useful compressor work, the 
specific volume of the refrigerant, in the absence of this part-load throttling process is used. This is 
appropriate since the throttle effect was primarily present to reduce mass flow rate, which is 
unnecessary in the modified structure where actual compressor power is known.  
 
The advantages that result from these modifications are listed: 
                                                      

8 The parameters are found using the full-load routine. 
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1) Fewer parameters must be estimated, specifically, the compressor parameters which were used to 
estimate volumetric flow rate. 

2) In some cases, less data is needed. For example, to parameterize a reciprocating chiller, 
refrigerant temperatures, were required. In centrifugal chillers, full-load data were necessary. 
Building chillers rarely operate at full-load. 

3) The number of loops was reduced since once additional input was added. 
 
In addition to reducing the number of loops, the secant method replaced the 'one-point iteration' 
method for updating the evaporator load estimate (Qe). This was achieved by estimating the slope of 
the objective function using an additional input value of the evaporator load.  
 
The diagram below illustrates the new model structure: 
 
Model inputs: Tei, Teo, Pcomp, Parameters  
Loop 1  

Steps 1) through 11) are performed for two estimates of Qe. The second guess is required for 
the secant method.  
 
(Evaporator Model) 

1) Estimate T1 using 4.2 
2) Calculate P1 using 4.5 
3) Calculate dhfg using 4.6 
4) Calculate h1 using 4.7 
 

(Condenser Model) 
5) Estimate T3 using 4.15 
6) Calculate P2 using 4.17 
7) Calculate h3 using 4.18 

 
(Compressor Model) 

8) Calculate Win using 4.12  
9) Calculate T1p using 4.13 
10) Calculate Mref using 4.11 
 

(Continuation of Evaporator Model) 
11) Recalculate Qe using 4.3 and 4.18  
12) Recalculate Qc 4.20 
13) Improve estimate of Qe using both estimates of Qe, and secant method 
14) Exit loop when converged on Qe 

End of Loop 1 
Model Outputs: Teo, Tco (both calculated using 4.1 and 4.14 respectively) 
 
The above routine was presented as a natural progression from the original Toolkit Model. However, 
the second and third models investigated in this study were power output – evaporator load input 
models. Hence, the above routine was modified further, such that power was predicted for the actual 
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evaporator load. This was easily achieved by placing a larger loop around the entire routine, where 
for given evaporator load, power was predicted. The secant method was used here as well, to ensure 
quick convergence upon the compressor power (Pcomp) more efficiently. Note, the modified model 
still has fewer loops, and a more efficient routine (secant-method vs. one-point iteration) for 
convergence.  

4.7 CALIBRATION OF MODIFIED TOOLKIT MODEL 

The previous section described the modifications made to the original Toolkit model, as well as 
changes to the computational scheme. Four parameters were left to be estimated: the evaporator and 
condenser heat transfer coefficients, the compressor constant losses, and losses proportional to the 
power. Rather than adapting the parameter estimation schemes proposed in the reference, a different 
approach was used. The field of optimization has produced a variety of routines that can minimize a 
multi-variable function by simply using starting conditions, and the value of the function. These 
methods are called direct search methods, and are ideal for HVAC applications, where the equations 
are non-linear in the parameters. The following section very briefly introduces the subject of multi-
variable optimization, describes the various direct search methods in limited detail, as well as the 
particular direct search method used to estimate the Toolkit parameters.  
  

4.7.1 OPTIMIZATION INTRODUCTION 

A function can be optimized using two broad methods: direct (numerical) or indirect (analytic). In 
direct methods, the solution is approached in an iterative manner, with each step hopefully improving 
the value of the objective function. Indirect methods attempt to reach the optimum in a single step 
without tests or trials, by analysis of the properties of the objective function; often this property is 
setting the partial derivative of the objective function with respect to each variable to zero. (Schwefel, 
1995) 
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The secant method that was used to improve the computational scheme of the Toolkit model is an 
example of an indirect method. That method is simple since the objective function is only a function 
of one variable.  
 
The Toolkit model is a complicated looped structure, whose equations cannot be reduced to a set of 
equations of known values that are linear in the parameters.9 Nor can the objective function, or error 
function, be written explicitly in terms of the known inputs and parameters. In fact, since the 
thermodynamic properties are a function of temperature and pressure, which themselves are estimated 
within the program, are not “known”. It is for these situations, where the partial derivatives of the 
function are not easily evaluated, that direct search methods are useful. They depend solely on the 
values of the objective function. The root mean square error was considered as the objective function: 

                                                      
9 This is true for this study, where part-load data is used to calibrate the model. Bourdouxhe (1994) did provide a 

full-load calibration scheme that is a combination of linear regression and a grid-type search method. 
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( )∑ −= 2 XmeasXpredRMSE  

  
The value of X depends on which model prediction is desired, that is, whether power or evaporator 
load is the desired output. Since the remaining models discussed are based on power predictions, only 
that case will be discussed.  
 
A brief description of direct search methods in general is included, followed by a more detailed 
description of the particular direct search method employed.  
 

4.7.2 DIRECT SEARCH METHODS 

There are a variety of multidimensional direct search methods available. They can be compared using 
various criteria: computation efficiency (i.e., number of iterations required to find a solution), 
convergence success (i.e., whether a solution is reached), and type of minima found (i.e., global vs. 
local minima). To illustrate the need for an efficient direct search method, consider the “Equidistant 
Grid Strategy”. An evenly meshed grid is placed over the space of all possible parameter values and 
the objective function is evaluated at each node. This method is by far the most computationally 
expensive, and requires that the problem be constrained in the parameters. By “Bellman’s Curse of 
Dimensions”, the number of computations increases exponentially with the number of variables.  
 
All direct search strategies assume a degree of smoothness in the objective function. None converge 
with certainty to the global minimum; at best local minima are found. This is true, not only for direct 
search methods, but gradient (based on first order partial derivatives) and Newton (based on second 
order partial derivatives) methods. The solution is therefore, extremely sensitive to the initial 
conditions. They are attractive not for the theoretical proofs of convergence, but for the fact that they 
are simple and have worked in practice. The most well known direct search methods are: 1) 
Coordinate Strategy, 2) Hooke and Jeeves Pattern Search, 3) Rosenbrock Rotating Coordinates, 4) 
Davies, Swann, and Campey Method, 5) Box’s Complex Strategy Method, and 6) Nelder –Mead 
Simplex Method. 
 
All methods employ a trial and error approach. This means that while rules are used to vary the 
parameter, in the hope of a better objective function value, there is no guarantee of a successful step. 
These “rules” are what differentiate the various methods. Schwefel compared these methods on the 
basis of convergence efficiency and number of parameters. At this moment, there is no widely 
accepted function that can be used for such comparison purposes, hence, Schwefel used a few 
different function types for his comparison. Since a summary cannot properly describe this 
comparison, the reader is referred to the reference for the results of this comparison. However, since 
there is no accepted function for comparison purposes, there is no universal or ‘optimal’ optimization 
method.    
 
The Nelder-Mead and Hooke-Jeeves methods appear to be widely popular in the optimization 
community (Wetter, 2001). A proof of convergence has been presented for the Hooke-Jeeves 
algorithm, although neither method distinguishes between global or local minima. Due to its 
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availability in the programming environment used in this study, the Nelder-Mead Simplex direct 
search method was chosen to find the parameter values that minimized the value of the objective 
function.  

4.7.3 NELDER-MEAD SIMPLEX METHOD10 

4.7.3.1 FORMULATION 

The idea of the simplex method was first proposed by Spendley. Suppose the number of variables 
(i.e., parameters) is n, then n+1 starting points form the vertices of a “polyhedron”. The vertices are 
equidistant from each other. For example, consider a bi-variable function: the polyhedron is an 
equilateral triangle. The objective function is evaluated at each vertex, then the vertex with the largest 
objective function value is reflected in the midpoint of the other vertices. The hope is that this 
reflection will place the vertex in a more promising place. If the next function evaluation results in the 
most recently reflected vertex having the largest value, then the second worst vertex is reflected. 
Nelder and Mead improved this method with contraction and expansion functions, that allow the 
simplex to elongate in long inclined planes, and contract in the neighborhood of the minimum. The 
three functions are defined as follows: 
 
(For reference, m = midpoint; l = minimum; h = maximum; P’s are the vertex values, and y is the 
value of the objective function evaluated at P.) 
 

1. Reflection: hm PPP ×−+= αα )(1  *   

 
2. Expansion: If the value of the objective function at P* (i.e., y*) produces a new minimum (y*<y) 
then the simplex is expanded in that same direction 
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If y** < yl , replace Ph with P**.  
Else, expansion failed and Ph is replaced by P* before restarting.  
 
3. Contraction: if the reflection to P* still results in a maximum value at y*, then Ph is redefined as P* 
if y* < yh, and the contraction is performed: 
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10 The Nelder-Mead Simplex method has nothing to do with the Simplex method of Linear Programming. 
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As long as y** < min (yh,y
*), then P** replaces Ph. Otherwise, the contraction failed contraction, and all 

vertices are replaced with the average between it’s value and the vertex with the minimum y value.  
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4.7.3.2 OTHER ISSUES 

If the variables are constrained, these constraints can be incorporated easily into the method by 
penalizing the objective function (i.e., setting it equal to a very large number) in disallowed values of 
the variables.  
 
Nelder and Mead compared the simplex method to the indirect, gradient based method of Powell. The 
convergence criterion was that the root mean square (r.m.s.) error should be less than 10-8. The N-M 
simplex method performed slightly better than Powell's method for two functions; convergence of the 
third function was strongly dependent on the initial step length, and was both more efficient and less 
efficient for different step lengths.  
 
For a number of variables between 2 and 10, the number of evaluations can be approximated by: 
 

( ) 11.213.16  += kN   

 
Consider a two variable problem, for which the variables are constrained between 1 and 100. (i.e., 
1<x1, x2<100). Selecting an increment of 1 and using the equidistant grid strategy, the number of 
evaluations would be 100x100 = 10,000 evaluations. Using the above formula, the Nelder Mead 
method should take 32 function evaluations, which results in a reduction of evaluations by more than 
99%. Not only, would the solution be converged upon more quickly, but two additional benefits are 
found: 1) the variables do not need to be constrained, and 2) the variables are not limited to specific 
intervals, as they are in the grid strategy.  
 
In summary, this method:  
1) does not use derivatives, 
2) requires little information of the function, and makes no assumptions about the surface, except 

that it is continuous and has a unique minimum in the area of search (i.e., the algorithm cannot 
distinguish between a local minimum in the search area, and other minima outside the search 
area), 

3) does well compared to gradient methods when curvature changes rapidly, and 
4) may falsely converge in the case of a space having a long, curved valley, with extremely steep 

sides. 
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5. GORDON-NG UNIVERSAL CHILLER MODEL 

5.1 INTRODUCTION 

The Gordon –Ng model was first developed in 1994, and then refined later. (Gordon, 1995) The 
second generation model relies purely on the first and second laws of thermodynamics, heat transfer 
relationships, and makes simplifications where appropriate to derive an equation that relates COP to 
commonly measured parameters, including inlet evaporator and condenser temperatures, and 
evaporator load. The resulting equation can be rearranged to a form that is linear in the parameters, 
and can be calibrated using linear regression. (Ng, 1996, 1997) 
 

5.2 DESCRIPTION AND CALIBRATION 

The model begins with a first law energy balance on the refrigerant. This balance includes energy 
leaks at the evaporator, condenser and compressor:  
 

positive are flowsenergy  all where
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From the second law, an entropy balance is performed on the refrigerant: 
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As in the ASHRAE Toolkit model, sensible heat exchange is ignored in both the condenser and the 
evaporator, which are modeled using the effectiveness-NTU method assuming an infinite capacity on 
the refrigerant side: 
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The COP is defined as the ratio of evaporator load to power, and the equations are simplified by 
neglecting energy leaks and entropy generation in expressions where they are small compared to 
other terms. These approximations were based on experimental measurements. The simplification of 
the above equations results in the following chiller performance equation: 
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The three performance parameters are: 
a) total internal entropy production, ∆ST 
b) total heat exchanger 'thermal resistance'11,  

pweepwcc CMCM
R

εε
11
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c) equivalent heat leak,  
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Although Qleak,eqv has a dependence on temperatures, the authors claim this dependence exerts a small 
influence on COP for properly operating commercial chillers. While the other parameters may also 
have slight dependence on temperatures, the authors found that adopting constant values resulted in 
performance predictions whose errors are less than the effects of typical measurement errors.    
 
The model is calibrated by fitting the function on the left side to the variables x1, x2, and x3, which 
are defined as, 
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Once calibrated, the equation is rearranged to solve for COP, or Power explicitly. 
 

5.3 COMPARISON BETWEEN TOOLKIT AND GORDON-NG  MODELS 

Both the Toolkit and Gordon-Ng models are based on first principles, but are different their 
assumptions, and approach. These are listed in Table 5.1.  

                                                      
11 Note that R is not equal to the sum of the reciprocals of the conventional UA values, but of UA values defined 

in terms of the difference between the inlet water temperature and the refrigerant temperature, rather than the log mean 
temperature difference. 
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Table 5. 1. Comparison of Physical Models 

Toolkit Gordon- Ng 
Neglects environmental losses in the energy 
balance (1st Law). 

Includes environmental losses in the energy 
balance (1st Law). 

Assumes isentropic compression. Estimates entropy generation. 
Evaporator and condenser UA's are determined 
separately. 

A single effective thermal resistance is 
determined for the whole chiller. 

Equations are solved in an iterative manner, 
and convergence is not guaranteed. 

Equation is explicit in power or COP. 

Requires refrigerant Thermo-physical 
properties.  

Does not require refrigerant properties.  

Original model structure is different for part-
load conditions, and for different chiller types, 
and the proposed calibration often required 
refrigerant data; modified model structure 
converts power into an input, so that the model 
is simplified, and is universal to all chiller 
types, and for part-load conditions. 

The model does not make any assumptions on 
the chiller type (i.e., compressor), and 
therefore, should be applicable to all chiller 
types. 
Furthermore, the model is valid at all loads; 
this has been validated experimentally by 
Gordon-Ng. 

A direct search method was used to calibrate 
the model. 

Linear regression was used to calibrate the 
model. 

Evaporator and condenser water flow rates are 
treated as variables (although the effect of flow 
rate on the convective heat transfer coefficient 
is ignored). 

Evaporator and condenser water flow rates are 
treated as constants (and incorporated into the 
thermal resistance parameter), although there is 
a variable condenser flow rate version of the 
model. 1 

Electromechanical losses are proportional to 
the compressor power. 

Combined evaporator and compressor leaks are 
constant, and are not proportional to 
compressor power.  

1 Gordon and Ng have addressed variable condenser water flow rate (Gordon, 1999). The model became non-linear in the parameters when 
considering variable condenser water flow rate. 

 
 



 

Masters Project – Plan II 27 Priya Sreedharan 

6. EMPIRICAL MODEL (DOE-2/COOLTOOLS) 

6.1 INTRODUCTION 

The DOE-2 model was developed by the Department of Energy as a tool to help guide architects, and 
engineers to design more energy efficient buildings. Within the DOE-2 program is a chiller module 
that simulates chiller performance. The DOE-2 chiller model (hereafter referred to as DOE-2 model) 
is based on three polynomial curves. They describe how the cooling capacity and efficiency (kW/ton) 
vary with operating conditions, as well as how the power consumption varies at part load conditions. 
They are empirical in the sense that the polynomial structure is not based on physical relationships. 
However, the model is somewhat a grey-box model, since the final power prediction of the chiller is 
based on physically meaningful quantities obtained from the polynomial curves. An assumption the 
model makes is that evaporator and condenser water flow rates remain constant. (PG&E, 1999)  
 

6.2 DESCRIPTION 

The three curves in DOE-2 are defined as follows:  
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The first curve describes how the cooling capacity of the chiller varies at different evaporator and 
condenser water temperatures, in comparison to the cooling capacity at reference conditions. The 
reference conditions can be any temperature, so long as they are consistent. According to ARI 
standards, these reference temperatures are 44 °F (6.7 °C ) and 85 °F  (29.4 °C). Q ref, and P ref are the 
full load cooling capacity, and power consumption at the reference chilled and condenser water 
temperatures.     
 
Thus,  
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The second curve describes how the full load (in)efficiency, defined as power consumption in kW per 
ton of cooling varies with water temperatures. This is also a dimensionless term where, 
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The third curve describes how the power consumption varies at part load conditions. The 
dimensionless term is defined as, 
 

load.-fullat  ischiller   when theone,  toequal is EIRFPLR  where(6.6) , 
)(
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Combining all three equations, the power at the specified operating conditions evaluated by: 
 

(6.7)   ),( EIRFPLREIRFTCAPFTPP refTeoTcicomp ×××=  

 
CoolTools was developed by the Pacific Gas and Electric Company (PG&E) to facilitate calibration 
of the DOE-2 model. In order to properly calibrate the model using the equations above, one must 
have both full-load and part-load data. In practice, chillers rarely operate at full load, and if data is 
collected on chillers during 'normal' operation, there is little chance that the chiller would have 
operated at full load at all. Thus, the CoolTools project collected data both at full and part load from 
over 100 chillers, and calibrated them to the DOE-2 model. This library of curves is the heart of the 
CoolTools package. Calibration by this library will be discussed in more detail in the next section.   
 

6.3 CALIBRATION  

Two methods of calibration are discussed: direct calibration using the DOE-2 curves, and facilitated 
calibration using the CoolTools package.   
 

6.3.1 METHOD 1 - DIRECT CALIBRATION 

The model can be directly calibrated if sufficient data are available at both full and part load. Data 
required are outlet evaporator and inlet condenser water temperatures, compressor power, and 
evaporator load. The parameters for the capacity (CAPFT) and efficiency (EIRFT) curves are found 
using full-load data, the definitions as described in (6.4) and (6.5), and multiple-variable linear 
regression. These parameters are used in the calibration of (6.3). First, the part-load ratios (PLR) are 
determined at each part-load operating point: 
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Then, the maximum compressor power at each operating point is calculated using the EIRFPLR's: 
 

refPCAPFTEIRFTP ××=max 
 

Finally, the EIRFPLR's are calculated using (6.6), and the parameters for 6.3 are determined by linear 
regression. 
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6.3.2 METHOD 2 - CALIBRATION BY THE COOLTOOLS LIBRARY OF CURVES 

The second method involves using the CoolTools automated calibration procedure. To facilitate the 
calibration of the DOE-2 chiller model from field operating data, the CoolTools project collected 
operating data both at full and part load from over 100 chillers and used these data to generate a 
library of curves that is included in the CoolTools package.  When limited performance data are 
available, a curve that matches the data can be selected from the library, resulting in a significantly 
better model than would have been obtainable otherwise.  
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7. MEASURED DATA AND DATA PROCESSING 

7.1 LABORATORY CHILLER  

7.1.1 EXPERIMENTAL ARRANGEMENT 

Performance data were collected from a centrifugal, 90 ton (316 kW) water-cooled McQuay chiller, 
with R-134 as the working fluid .12 The test stand was designed to meet the American Refrigeration 
Institute (ARI) specifications for testing chillers, with the goal of simulating the load of a real 
building. The chiller itself follows the basic design of most vapor-compression chillers (compressor – 
condenser – expansion valve – evaporator). The capacity of the chiller is controlled by adjusting the 
inlet guide vanes to the impeller of the compressor. The onboard chiller controller hydraulically 
regulates the vane position to achieve the desired setpoint temperature, although, the vane position is 
not monitored. The motor itself is external to the chiller, with a drive shaft connecting the motor to 
the compressor (compared to a hermetically sealed motor). A variation to the main refrigerant line, 
includes a separate motor cooling line which diverts refrigerant flow from the expansion valve to the 
motor, and recombines with the remaining refrigerant flow prior to entering the evaporator.  

7.1.2 TEST SEQUENCE  

ARI standards determine the range of condenser inlet temperatures, and evaporator outlet 
temperatures at which the chiller should be tested. In addition, the chiller was tested at various part-
load conditions. The temperature guidelines were followed as closely as possible, but were limited in 
some cases. The most severe limitation was on the upper limit of the condenser temperatures, since 
larger condenser temperatures could result in surge (when the larger pressure lift causes the 
refrigerant to flow in the reverse direction). A matrix of test conditions was devised, such that the 
evaporator setpoint was changed as minimally as possible (in order to reach steady-state conditions 
more quickly). Chiller data at 27 different operating conditions were obtained.  

7.1.3 MEASURED DATA AND SENSOR ACCURACY 

Water flow rates and temperatures were measured on both the condenser and evaporator sides. Water 
temperatures at other locations were measured as well, but not used for chiller modeling. 
Temperatures were measured by two sensor types, thermistors, and Resistance Temperature Detectors 
(RTDs). (Two types of sensors were present, since one was part of the chiller control panel, and the 
other, the overall test stand controller.) The RTD measurements were reported as their accuracy was 
superior to the thermistors’. Vortex flow meters were used to measure the water flow rates. 
Compressor power was measured as well, by a watt transducer.  
 
Table 7.1 lists the sensors and their accuracy. 

                                                      
12 This data was collected by Purdue University, and was presented in the Report # 4036-3, available from the Ray 

Herrick Laboratory, Purdue. 



 

Masters Project – Plan II 31 Priya Sreedharan 

Table 7.1: Sensors and Uncertainty 

Point Sensor Type Uncertainty 
(%) 

Uncertainty 
(Absolute 
Terms)  

Water Temperatures Resistance Temperature 
Detector (RTD) 

-- ± 0.05 F  
(0.03 C) 

Evaporator Volumetric 
Flow Rate 

Vortex Flow Meter (VFM) ±1 ± 2.2 gpm 1 

(8.3 l/min) 
Evaporator Mass Flow Rate -- -- ± 0.14 kg/s 2 

 
Condenser Volumetric 
Flow Rate  

VFM ±1 ± 2.8 gpm 1 

(10.6 l/min) 
Condenser Mass Flow Rate -- -- ± 0.18 kg/s 2 

 
Compressor Power Watt Transducer ±1.5  ±1.3 kW 3 
    

1  Calculated from the % uncertainty and design flow rates. 

2  Calculated from the % uncertainty and assuming water density of 1 kg/l 

3  Calculated from a full load power of 85 kW. 

 
The data provided in the report had been filtered to remove the transient data, and were ready for 
analysis. However, prior to applying the data to the models, a simple energy balance was performed 
on the chiller to ensure that environmental losses were below acceptable standards. This step was 
considered important, since the ultimate objective of the model is to predict power measurements 
within high accuracy, and this cannot be achieved unless the data is considered to be accurate.  The 
energy balance on the chiller is: 
 
Energy Balance = Qe + Pcomp – Qc (kW),  
where a positive energy balance implies energy loss at the compressor or condenser, and a negative 
energy balance implies energy gain at the evaporator.     

7.2 FIELD (BUILDING) CHILLER 

7.2.1 CHILLER AND BUILDING DESCRIPTION 

Data was collected from an older 225 ton (791 kW) Carrier water-cooled centrifugal chiller, which 
uses R-11, over a period of 18 months.13 The chiller capacity was controlled by adjusting the inlet 
guide vanes of the compressor. Chiller data, along with other HVAC&R system data was collected as 
part of a building diagnostics project by Lawrence Berkeley National Laboratory (LBNL). Evaporator 
and condenser flow rates, temperatures, and compressor power were collected every minute using 
high quality sensors. (Piette, 1998) 

                                                      
13 The chiller was installed around 1970. 
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7.2.2 SENSOR ACCURACY 

Water temperatures were measured by precise thermistors, designed to eliminate sensor drift. The 
thermistors were calibrated to an accuracy of 0.008 °F (0.0044 °C) over a full range of values, using a 
NIST traceable procedure. Water flow rates were measured by magnetic flow meters, which were 
installed in sufficiently long sections of the pipe (as pipe bends affect accuracy). Power was measured 
by three phase power transducers.  
 
Table 7.2 lists the sensors with their accuracy. 

Table 7.2: Sensors and Uncertainty 

Point Sensor Type Uncertainty 
(%) 

Uncertainty 
(Absolute 
Terms)  

Water Temperatures Thermistors -- ± 0.008 °F  
(0.0044 °C) 

Evaporator Volumetric 
Flow Rate 

Magnetic Flow Meter 
(MFM) 

±0.5 ± 2.9 gpm 1 

(10.9 l/min) 
Evaporator Mass Flow Rate -- -- ± 0.18 kg/s 2 

 
Condenser Volumetric 
Flow Rate  

MFM ±0.5 ± 2.7 gpm 3 

(10.1 l/min) 
Condenser Mass Flow Rate -- -- ± 0.17 kg/s 2 

 
Compressor Power Watt Transducer ±0.2  ±0.36 kW  4 

1  Calculated from the % uncertainty and an average flow rate of 577 gpm. 

2  Calculated from the % uncertainty and assuming water density of 1 kg/l. 

3  Calculated from the % uncertainty and an average flow rate of 534 gpm. 

4  Calculated from full load power of 180 kW. 

7.2.3 STEADY-STATE FILTERING AND DATA BINNING 

A simple steady-state filter was developed to remove data from transient operation. In the chiller, 
transient behavior occurs during start-up and shut-down, as well as when the chilled water setpoint is 
changed, and is detectable by either unusually high or low efficiencies. A geometrically weighted 
average of the functional variation is calculated as follows: 
 

 
A large forgetting factor favors the most recent data, while a small forgetting factor tightens the 
steady-state requirement. Both the forgetting factor and the threshold were tuned until the data 
appeared to be filtered thoroughly. The data was filtered by three data points: chilled water 
temperature, evaporator load, and condenser water temperature. (Piette, 1999) 
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In order to produce a representative data set for calibration of the models, the entire filtered data set 
was binned by chilled water temperature, condenser temperature, and evaporator load. The data in 
each bin were averaged, and these average values comprised the training data.  
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8. UNCERTAINTY ANALYSIS  

8.1 EVAPORATOR AND CONDENSER LOAD UNCERTAINTIES 

Measurement error is comprised of two components: bias and precision errors. The bias consistently 
shifts the sampled mean from the true mean by a fixed amount. The precision, however, is scattered, 
and is normally distributed about the sampled mean. The combination of these independent errors 
results in the true error. This true error is what is known as uncertainty. Typically, the uncertainty 
guarantees that the measured value is within x% of the true value, with a confidence of 95%. The 
uncertainty in the individual measurements results in the propagation of error.   
 
In general, the uncertainty of a function is dependent on the uncertainties of each independent 
variable, and the sensitivity of the function to each variable. By approximating the uncertainty 
contributions from each variable with the first two terms of the Taylor series expansion, the 
uncertainty of a function, f, with variables, xi, is: (Figliola, 1995)  
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The calculated evaporator and condenser loads demonstrate error propagation, since each are 
dependent on three measured variables. (The specific heat of water, and densities are assumed 
constant.) 
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The evaporator load uncertainty can be calculated using (8.1), and (8.2): 
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It is often more convenient to represent the uncertainty in terms of a percentage. Dividing both sides 
by the evaporator load and multiplying by 100 results in: 
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(8.4) requires the uncertainty of the temperature change, which is shown below: 
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The uncertainty of the condenser load can be calculated in a similar way, and is exactly analogous to 
(8.4): 
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( ) ( ) ( ) (8.7)  2 22
TciTcoTciTc UUUu =+±=∆  

8.2 UNCERTAINTY IN MODELED PREDICTIONS 

The uncertainty in the actual evaporator and condenser loads is easily calculated at each operating 
point using the above equations. However, the purpose of this study is to compare various chiller 
models, and identify those that are adequate for fault detection. In operation, the model would be used 
to determine when a fault is generated, that is, the error between the predicted power (for example), 
and actual power is above a predefined threshold. It is imperative to be able to differentiate between a 
true fault, and an error due to experimental uncertainty. Thus, the uncertainty of the model predictions 
due to error in the measured variables was investigated.  
 
When it is undesirable to calculate the sensitivities analytically (i.e., using partial derivatives), a finite 
difference approximation can be used. For example, if one variable is perturbed, the difference 
between the unperturbed function value and perturbed function value divided by the perturbation is 
the sensitivity to that variable.  
 
To evaluate the overall uncertainty in the function, the Sequential Perturbation method was used. 
(Figliola, 1995)  

8.2.1 SEQUENTIAL PERTURBATION  

The sequential perturbation method basically calculates the uncertainty in a worst case scenario. Each 
variable is perturbed one at a time to its maximum values, and then to its minimum values. The 
uncertainty due to each variable is based on the average, and the total uncertainty due to all variables 
is based on the sum of the squares of the uncertainties. Steps 1 through 6 describe this method: 
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Each variable requires 2 model runs, therefore, a total of 2L model runs is required to calculate the 
uncertainty in the model predictions.  
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9. RESULTS – LABORATORY CASE STUDY 

Section 9 presents the analysis of the data obtained from the laboratory chiller. Details of the chiller 
and experimental measurements were given in Section 7.1. 

9.1 ENERGY BALANCE AND UNCERTAINTY IN LOAD CALCULATIONS 

Figure 9.1 shows the energy balance as a function of the test (each test represented different operating 
conditions). The error bars represent the uncertainty range of the energy balance, following 
procedures described in Section 8, and 9.1.  
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Figure 9.1.  Energy Balance  

 
The maximum compressor power is 85 kW and evaporator load is 316 kW. The energy balance as a 
percentage of the maximum compressor power, and evaporator load, respectively, was calculated, and 
is shown in Figures 9.2 and 9.3.  
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Figure 9.2. Energy Balance as Percentage of Maximum Power 
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Figure 9.3. Energy Balance as Percentage of Maximum Evaporator Load 

The uncertainty analysis confirmed that the observed energy imbalance is not due to sensor 
uncertainty alone. The energy imbalance was correlated with the evaporator load, condenser load, and 
compressor power. These results are shown in Figures 9.4 – 9.6.  
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Figure 9.4.   Energy Balance Correlation with Evaporator Load 
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Figure 9.5.   Energy Balance Correlation with Condenser Load 
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Figure 9.6.   Energy Balance Correlation with Compressor Power 

The energy balance shows a significantly stronger correlation with the compressor power than with 
either the evaporator or condenser load. This suggests that the energy imbalance could be a result of 
electromechanical losses from the motor to the environment. Two versions of the laboratory data set 
were used to test the models, the original and one in which the compressor measurements were 
reduced by 30%, resulting in an approximately zero energy balance. Both data sets were used in order 
to observe the effect of the energy losses on the model predictions. The data set for which the power 
measurements were reduced are hereafter named “Adjusted Data”, and the unchanged data set are 
named "Original Data".  
 
Figures 9.7 and 9.8 shows the energy balance as a percentage of the maximum compressor power, 
and evaporator load after the power measurement adjustment.  
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Figure 9.7  Energy Balance (% Maximum Power) 
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Figure 9.8  Energy Balance (% Maximum Evaporator Load) 

The energy balance with adjusted power is within 10% of the maximum compressor power, and 2% 
of the maximum evaporator load. Figure 9.8 shows the adjusted energy balance with adjusted 
uncertainty analyses, as a function of test.  
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Figure 9.9 Adjusted Energy Balance 

As seen in Figure 9.9, the adjusted energy balance, when accounted for uncertainty is approximately 
zero. 
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9.2 ASHRAE TOOLKIT RESULTS 

9.2.1 CALIBRATION  

Both forms of the objective or error functions were used to calibrate the model. . The initial parameter 
values for the Nelder-Mead optimization were chosen as follows: 
 
1) The evaporator conductance (UAe) was estimated using the classical heat exchanger relationships 

from (4.2), (4.4), evaporator load (Qe), and estimated evaporating temperature (Te,ref).
14 

2) The condenser conductance (UAc) was estimated in a similar manner. 
3) The Compressor losses proportional to compressor power (α) was simply set to a small number 

(0.2). 
4) The constant losses from the motor/compressor (Wlo) was set to a small fraction (e.g., 0.2) of the 

maximum compressor power (Pcomp,max).  
 
Although the Nelder-Mead optimization did not require constraints on the parameters, the following 
constraints were forced to ensure that the parameters were reasonable: 
1) All parameters must be greater than zero.  
2) Neither of the heat exchanger conductance's should be larger than the other by more than 150%.  
3) The maximum useful compressor work (as calculated using Wlo and α) cannot exceed the 

maximum compressor power. 
4) proportional losses (α) cannot exceed one. 
 
Once the optimization converged, the final parameters were used to verify that the objective function 
had indeed been minimized. This was achieved by perturbing the parameters individually a small 
amount both in the positive and negative directions. All parameters, except for the condenser 
conductance (UAc) had an immediate effect on the objective function value when varied by ±1%. The 
condenser conductance required an increase of 5% to result in a small increase in the objective 
function value (∼0.01 kW) for the original data set, and an increase of 2% for the adjusted data set. 
 
Table 9.1 shows the parameter sets that were estimated from the measured performance of the 
laboratory chiller. 

Table 9.1 ASHRAE Toolkit Parameters: Laboratory Chiller 

Parameter Adjusted Data  Original Data 
UAe (kW/K) 92.49 68.54 
UAc (kW/K) 170.37 171.36 
α  0.0 0.28 
Wlo (kW) 18.09 26.82 
r.m.s. error (kW) 1.34  1.95  

 

                                                      
14 The refrigerant temperature estimates were obtained from the chiller control panel, based on measured 

evaporator and condenser pressures. 
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In addition to verifying that a true minimum was found, the model was exercised with a range of 
parameter values for both heat exchanger conductances (UAe and UAc), maintaining the other 
parameters (Wlo and α) at their optimized values to observe the shape of the objective function and 
verify that a global minimum, rather than an isolated local minimum was found. The surface graphs 
from this exercise are presented in figures 9.10 and 9.11.   

 
Figure 9.10. ASHRAE Toolkit Results - Laboratory Chiller -  Objective Function (Adjusted 

Data) 
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Figure 9.11. ASHRAE Toolkit Results - Laboratory Chiller -  Objective Function (Original 

Data) 

Overall, the shapes of both surfaces were quite similar, which follows the expected behavior, in that 
the heat exchanger UA's are inversely related. The sum of the reciprocals of the UA's is 
approximately constant, indicating that the total thermal resistance of the condenser and the 
evaporator is well-defined by the performance data.  

9.2.2 MODEL RESULTS 

Comparisons of the predicted and measured compressor powers are shown in figures 9.12 and 9.13. 
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Figure 9.12.  ASHRAE Toolkit Results - Laboratory Chiller (Adjusted Data) 
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Figure 9.13.  ASHRAE Toolkit Results - Laboratory Chiller (Original Data) 

Table 9.2 presents the statistical analysis for the model predictions. 
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Table 9.2. Statistical Analysis of Toolkit Model Results 

Statistical Value Adjusted Data  Original Data 
Average Error (kW) 1.11 1.56 
Error (%) 3.02 2.98 
r.m.s. error (kW) 1.34 1.95 
r.m.s. error (%) 3.54 3.69 

 
Since the condenser and evaporator pressures were available, the internally predicted pressures for 
both the heat exchangers are shown in figures 9.14 and 9.15. (The results from the original data set 
are shown, since the results from the adjusted data set were similar.) 
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Figure 9.14.  Evaporator Pressure Model Predictions (Original Data) 
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Figure 9.15.  Condenser Pressure Model Predictions (Original Data) 

 
The evaporating pressures are overestimated, particularly at higher pressures, while the condensing 
pressures are slightly underestimated. Condensing and evaporating pressures correlate directly with 
the evaporating and condensing temperatures. This implies that, based on the heat transfer, and heat 
exchanger effectiveness relationships, both the evaporator and condenser conductance’s are 
overestimated. This result was expected, since, in both cases, the sensible heat transfer was not 
considered separately, and was lumped into the isothermal heat transfer process.  
 
A sequential perturbation analysis was performed to determine the uncertainty in the power 
predictions. Figure 9.16 shows the results from this analysis. This analysis was performed using the 
original data set. 
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Figure 9.16.  ASHRAE Toolkit Results - Laboratory Chiller With Uncertainty Error Bars 

(Original Data) 

The r.m.s. error (kW) and r.m.s. error (%) of the uncertainty was calculated from the uncertainty at 
each individual operating point using the following function: 
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Using the above formulae, the uncertainty in model predictions due to measurement errors in the 
input data is estimated to be 0.83 kW, or 1.37%.  
 
The Toolkit model assumes an energy balance in order to estimate the condenser load. Therefore, the 
energy losses from the compressor resulted in an overestimation of the condenser load when the 
original data was used. In the case of the adjusted data, the condenser load was more accurately 
predicted. Figure 9.17 shows the condenser load predictions for both cases. 
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Figure 9.17. ASHRAE Toolkit Condenser Load Predictions- Laboratory Chiller 

9.3 GORDON-NG UNIVERSAL MODEL RESULTS 

The Gordon-Ng model was parameterized using multi-variable linear regression. The term 'y' refers to 
the terms in (5.5). The results of the linear regression are shown graphically in figures 9.18 and 9.19. 
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Figure 9.18.  Gordon-Ng Linear Regression Results (Adjusted Power)  
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Figure 9.19.  Gordon-Ng Linear Regression Results (Original Power)  

Table 9.3 shows the parameter sets that were estimated from the measured performance of the 
laboratory chiller. 

Table 9.3 Gordon-Ng Parameters: Laboratory Chiller 

Parameter Adjusted Data  Original Data 
∆ST  (kW/K) 0.058  0.080  
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Parameter Adjusted Data  Original Data 
R (K/kW) 0.051  0.079  
Qleak,eqv (kW) 35.26  105.65  

 
Using these parameters, and rearranging (5.5) the compressor power was predicted. Comparisons of 
the predicted and measured compressor powers are shown in figures 9.20 and 9.21. 
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Figure 9.20.  Gordon-Ng Model Results - Laboratory Chiller (Adjusted Data) 
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Figure 9.21.  Gordon-Ng Model Results - Laboratory Chiller (Original Data) 
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While the estimated parameter sets differed significantly, particularly for the heat loss term, the trends 
observed in the modeled power were very similar. The validity and significance of the parameters 
was questionable, particularly for the heat loss term for the original data set. A loss of 105 kW, which 
exceeds the maximum power consumption of the compressor, and is approximately one third of the 
maximum evaporator load is extremely large. Ng et al. (1997) had estimated an equivalent heat loss 
of approximately 40% for both a 10 kW and 70 kW chiller. The heat loss for the adjusted data was 35 
kW, and represented 60% of the adjusted maximum compressor power.  
 
The heat exchanger conductance’s obtained from the Toolkit calibration, along with water mass flow 
rates were used to calculate each heat exchanger effectiveness, and from there, the equivalent thermal 
resistance. The calculated thermal resistance was 0.037 K/kW for the adjusted data, and 0.040 K/kW 
for the original data. These are less than the resistances estimated from Gordon-Ng, particularly for 
the original data, but as in the Gordon-Ng results, the original data produced a larger thermal 
resistance.  
 
Table 9.4 presents the statistical analysis for the model predictions. 

Table 9.4. Statistical Analysis of Gordon-Ng Model Results 

Statistical Value Adjusted Data Original Data 
Average Error (kW) 1.12  1.70 
Error (%) 2.94  3.06 
r.m.s. error (kW) 1.38 2.21 
r.m.s. error (%) 3.42  3.73 

 
Taking into account that the adjusted power measurements were less than the original power 
measurements, the statistics for both data sets were very similar. 
 
An uncertainty analyses of the model predictions, due to experimental error was performed using the 
sequential perturbation method. The results are presented graphically, as error bars in figure 9.22. 
Again, the original data were used in this analysis. 
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Figure 9.22.  Gordon-Ng Model Results With Uncertainty Error Bars - Laboratory Chiller  

The uncertainty in model predictions due to measurement errors in the input data is estimated to be 
0.68 kW, or1.09 %.  

9.4 DOE-2 MODEL RESULTS 

The three DOE-2 curves were calibrated; the first two curves (CAPFT, EIRFT) used only full-load 
data, and the third (EIRFPLR), included the part-load data as well. Six full-load data points were 
available, and twenty-one at part-load. Table 9.5 lists the reference conditions and parameters 
estimated from the "adjusted" measured performance of the laboratory chiller.  

Table 9.5. DOE-2 Parameters and Reference Conditions – Adjusted Data 

Curve a b c d e f 
CAPFT 3.33E+00 -2.02E-01 6.36E-06 6.99E-02 -1.30E-03 2.62E-03 
EIRFT 1.61E+00 4.68E-02 -4.08E-04 -5.59E-02 5.23E-04 -2.35E-04 
EIRFPLR 3.63E-01 4.79E-01 1.49E-01    
Q e,ref (tons) 84.01      
Pref (kW) 56.76      
 
The results of the calibration are shown in figures 9.23 through 9.25: 
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Figure 9.23.  DOE-2 Calibration of CAPFT  Curve - Laboratory Chiller (Adjusted Data) 
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Figure 9.24.  DOE-2 Calibration of EIRFT  Curve - Laboratory Chiller (Adjusted Data) 
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Figure 9.25.  DOE-2 Calibration of EIRFPLR  Curve - Laboratory Chiller (Adjusted Data) 

While the data were separated into part-load and full-load categories for the calibration, once the 
parameters were found, the model predictions were based on the generic model formula per (6.7). A 
comparison of measured and predicted compressor power is shown in figure 9.26. 
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Figure 9.26.  DOE-2 Results - Laboratory Chiller (Adjusted Data) 

In a similar fashion, the DOE-2 model was calibrated using the original data set. Table 9.5 lists the 
reference conditions and parameters estimated from the original measured performance of the 
laboratory chiller.  
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Table 9.6. DOE-2 Parameters and Reference Conditions – Original Data 

Curve a b c d e f 
CAPFT 3.33E+00 -2.02E-01 6.35E-05 6.99E-02 -1.30E-03 2.62E-03 
EIRFT 1.61E+00 4.68E-02 -4.10E-04 -5.59E-02 5.20E-04 -2.35E-04 
EIRFPLR 3.57E-01 3.86E-01 2.51E-01    
Q e,ref (tons) 84.01      
P ref (kW) 81.08      
 
Results of calibration are shown in Figures 9.27 – 9.30. 
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Figure 9.27.  DOE-2 Calibration of CAPFT  Curve - Laboratory Chiller (Original Data) 
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Figure 9.28.  DOE-2 Calibration of EIRFT  Curve - Laboratory Chiller (Original Data) 
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Figure 9.29.  DOE-2 Calibration of EIRFPLR  Curve - Laboratory Chiller (Original Data) 
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Figure 9.30. DOE-2 Results - Laboratory Chiller (Original Data) 

Again, the results for both data sets showed similar trends. As expected, the coefficients were 
different. 
 
Table 9.7 presents the statistical analysis for the model predictions. 

Table 9.7. Statistical Analysis of DOE-2 Model Results 

Statistical Value Adjusted Data Original Data 
Average Error (kW) 1.56  2.00 
Error (%) 4.56  4.05 
r.m.s. error (kW) 1.92 2.42 
r.m.s. error (%) 6.02 5.26 

 
Taking into account that the adjusted power measurements were less than the original power 
measurements, the statistics for both data sets were similar. 
 
An uncertainty analysis was performed on the model predictions to determine the influence of the 
uncertainties of the input data. For this purpose, the original data set was used. As with the other 
models, the sequential perturbation method was used. The results are presented graphically, as error 
bars in Figure 9.31. 
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Figure 9.31.  DOE-2 Model Results With Uncertainty Error Bars - Laboratory Chiller  

The uncertainty in model predictions due to measurement errors in the input data is estimated to be 
0.58 kW, or 0.99 %.  
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10. RESULTS – FIELD CASE STUDY 

Section 10 includes the analysis of the chiller data obtained from the building chiller over a period of 
one and half years. Details of the chiller and experimental measurements were given in Section 7.2. 

10.1 DATA PROCESSING  

10.1.1 FILTERED AND BINNED DATA 

Please refer to section 7.2.3 for a more complete description of the data conditioning.  
 
The data were first filtered for transients. Although noise is always present in experimental data, the 
transient effects due to start and shutdown were much larger, and resulted in unrealistic chiller 
efficiencies. The filtered data set was achieved by increasing the filter parameters, such that the 
anomalous points with unusual efficiencies were removed. Next, the data were binned by condenser 
inlet, evaporator outlet temperatures, and evaporator load. The results of the filtering and binning are 
presented as inefficiency (1/COP) versus evaporator load graphs. 
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Figure 10.1. Efficiency - Building Chiller - Entire Filtered Unbinned Data Set 
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 Figure 10.2. Efficiency - Building Chiller – Filtered Binned Data Set 

10.1.2 ENERGY BALANCE AND UNCERTAINTY IN LOAD CALCULATIONS 

The energy balance was performed on both the filtered unbinned data set, and filtered binned data set. 
Figures 10.3 - 10.7 present the results in various modes.  

-40

-20

0

20

40

60

80

Time 

B
al

an
ce

 (
kW

)

Peak Energy Balance due to Evaporator Inlet w ater 
Sensor failure 

Jun-98 Oct-98 Aug-99 Sep-99

 
Figure 10.3. Energy Balance - Building Chiller Filtered (Unbinned) Data 
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Figure 10.4. Energy Balance vs. Evaporator Load - Building Chiller Binned Data  
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Figure 10.5. Energy Balance vs. Compressor Power - Building Chiller Binned Data 
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Figure 10.6. Energy Balance (% of Maximum Power) - Building Chiller Binned Data 
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Figure 10.7. Energy Balance (% of Maximum Evaporator Load) - Building Chiller Binned Data 

The energy balance does not correlate with the compressor power. The energy balance confirmed that 
energy losses (or gains) are within 10% of the maximum compressor power, and 2.5% of the 
evaporator load.  
 
An uncertainty analysis was performed on the energy balance using the binned data. The procedures 
outlined in Section 8 were used. The results are shown in Figure 10.8. 
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Figure 10.8. Energy Balance with Uncertainty Error Bars- Building Chiller Binned Data 
 
The uncertainty in energy balance is estimated at ± 2.9 kW. 

10.2 ASHRAE TOOLKIT RESULTS 

10.2.1 CALIBRATION 

The model was calibrated using the binned data set, and both forms of the objective function. The 
initial parameter values for the Nelder-Mead optimization were chosen as follows: 
 
1) The evaporator conductance (UAe) was estimated using the classical heat exchanger relationships 

from (4.2), (4.4), evaporator load (Qe), and an estimated evaporating temperature (Te,ref). 
2) The condenser conductance (UAc) was estimated in a similar manner. 
3) The Compressor losses proportional to compressor power (α) was simply set to a small number 

(0.2). 
4) The constant losses from the motor/compressor (Wlo) was set to a small fraction (e.g., 0.2) of the 

maximum compressor power (Pcomp,max). 
 
Although the Nelder-Mead optimization did not require constraints on the parameters, the following 
constraints were forced to ensure that the parameters were reasonable: 
1) All parameters must be greater than zero.  
2) Neither of the heat exchanger conductance's should be larger than the other by more than 150%.  
3) The maximum useful compressor work (as calculated using Wlo and α) cannot exceed the 

maximum compressor power. 
4) proportional losses (α) cannot exceed one. 
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Once the optimization converged, the objective function was confirmed to be a minimum by 
perturbing the parameters by ±1%.  
 
Table 10.1 shows the parameters that were estimated from the measured performance data of the 
building chiller. 

Table 10.1 ASHRAE Toolkit Parameters: Building Chiller 

Parameter  
UAe (kW/K) 54.54 
UAc (kW/K) 135.98 
α  0.00 
Wlo (kW) 41.40  
r.m.s. error (kW) 4.09 

 
The shape of the objective function was determined with a range of parameter values for both heat 
exchanger conductances (UAe and UAc), maintaining the other parameters (Wlo and α) at their 
optimized values . The surface graph is shown in figure 10.9.   
 

 
Figure 10.9. ASHRAE Toolkit Results - Building Chiller -  Objective Function 

The above graph was similar to the shapes determined by the laboratory chiller objective functions, in 
that, the contour lines showed the expected inverse relationship between the heat exchanger 
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conductances. Surprisingly, the UA's are larger for the laboratory chiller, although the building chiller 
has a larger capacity (by almost 150%).   

10.2.2 MODEL RESULTS 

A comparison of the predicted and measured compressor powers for the binned data set is shown in 
figure 10.10.  
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Figure 10.10.  ASHRAE Toolkit Results - Building Chiller  

The Toolkit results show a rather significant discontinuity between predicted and measured power at 
high power (i.e., greater than 105 kW). This discontinuity is discussed in detail in the discussion 
section. (The discontinuity was found to be present in all the model results, and was not unique to any 
one model, or even the result of a modeling flaw. Therefore, the discussion was better suited for the 
discussion section, Section 11.)  
 
Table 10.2 presents the statistical analysis for the calibrated model predictions. 

Table 10.2. Statistical Analysis of Toolkit Model Results – Binned Data Set 

Statistical Value  
Average Error (kW) 2.97 
Error (%) 3.86 
r.m.s. error (kW) 4.09 
r.m.s. error (%) 4.82 

 
Using the calibration results, the entire unbinned, filtered data set was modeled. A comparison of the 
predicted and measured compressor powers is shown in figure 10.11. 
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Figure 10.11.  ASHRAE Toolkit Results - Building Chiller Filtered Unbinned Data Set 

Table 10.3 presents the statistical analysis for the full data set. 

Table 10.3. Statistical Analysis of Toolkit Model Results – Unbinned, Filtered Data Set 

Statistical Value  
Average Error (kW) 2.40 
Error (%) 4.00 
r.m.s. error (kW) 3.00 
r.m.s. error (%) 4.75 

 
A sequential perturbation analysis was performed on the binned data set to determine the uncertainty 
in the power predictions. The results from this analysis are presented in Figure 10.12.  
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Figure 10.12.  ASHRAE Toolkit Results With Uncertainty Error Bars - Building Chiller  

The uncertainty in model predictions due to measurement errors in the input data is estimated to be 
0.32 kW, or 0.34 %. This uncertainty is particularly small, and even less than the uncertainty in the 
flow measurement, because it is biased towards measurements of low power. In the low power 
regime, a reduction (or increase) in flow, and hence, load, results in a comparatively small decrease 
(or increase) in power since the efficiency deteriorates rapidly.  
 

10.3 GORDON-NG UNIVERSAL MODEL RESULTS 

The Gordon-Ng model is calibrated (parameterized) using linear regression of the term represented in 
(5.5). The binned data set was used to calibrate the model. The results of this regression are shown in 
figure 10.13.  
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Figure 10.13.  Gordon-Ng Linear Regression Results - Building Chiller  

Table 10.4 shows the parameter sets that were estimated from the measured performance of the 
laboratory chiller. 

Table 10.4 Gordon-Ng Parameters: Building Chiller 

Parameter Value 
∆ST  (kW/K) 0.134 
R (K/kW) 0.043 
Qleak,eqv (kW) 12.05 

 
The entropy generation for the building chiller is larger than for the laboratory chiller's by 100% for 
the adjusted data, and 50% for the original data. This can be explained, in part by a larger refrigerant 
flow rate in the larger chiller. This pattern followed the results found by Ng et. al (1997), where the 
estimated entropy generation of a 70 kW reciprocating chiller was approximately 500% larger than 
the entropy generation of a 10 kW reciprocating chiller. The heat loss parameter was 12 kW, which 
was approximately 7% of the maximum compressor power. This value was low compared to the 40% 
obtained by Ng et. al (1997), but was more believable than the results obtained for the laboratory 
chiller. The equivalent heat loss term can be qualitatively compared to the compressor loss term 
obtained from the Toolkit model. The equivalent heat loss term can be qualitatively compared to the 
compressor loss term obtained in the Toolkit model. When comparing the results for the adjusted 
data, the compressor losses from the Toolkit model are larger than the heat leak term found in the 
Gordon-Ng model. This may be due to the assumption of isentropic compression in the Toolkit 
model, which is an idealization that must be ‘corrected’ with a larger compressor loss term. This 
result, however, was not found with the laboratory chiller results.  
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Again, the heat exchanger conductance’s estimated from the Toolkit model were used in combination 
with the water mass flow rates to estimate an equivalent thermal resistance of 0.034 K/kW. This was 
slightly less than the 0.043 K/kW obtained from the Gordon-Ng model, but were not significantly 
different, as was the case with the laboratory chiller. For both the laboratory and building chillers, 
these thermal resistances are significantly different, although the ranking is the same in each case. 
Specifically, the thermal resistance for the building was less than that of the laboratory chiller using 
adjusted data, which in turn was less than the thermal resistance for the laboratory chiller using the 
original data. Table 10.4 can better demonstrate this point. 

Table 10.4. Comparison of Thermal Resistance’s between Toolkit and Gordon-Ng Models 

Thermal Resistance (K/kW) Toolkit Gordon-Ng 
Laboratory Chiller – 
Original Data 

0.040 0.079 

Laboratory Chiller – 
Adjusted Data 

0.037 0.051 

Building Chiller 0.034 0.043 
However, the thermal resistance for the building chiller is not half the resistance for the laboratory 
chiller, as would be expected based on the capacity difference. 
 
Using the estimated parameters, and rearranging (5.5) the compressor power was predicted. The 
results are shown in Figure 10.14. The variable 'y' is proportional to the inverse of the COP. The 
lower part of the previous figure showed poor correlation between the predicted y and measured y. 
The region above the 45° line corresponded to the upper-right region in Figure 10.16 where the 
measured power was significantly less than the estimated power. The region below the 45° line 
corresponded to the regions where estimated power was significantly less than the measured power. 
Both of these regions are marked on figure 10.14. Again, the discontinuity between measured and 
predicted power at 105 kW is similar to that seen in the Toolkit results. As noted earlier, the 
discussion section includes an explanation for this discontinuity. 
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Figure 10.14.  Gordon-Ng Model Results - Building Chiller Binned Data Set 

Table 10.5 presents the statistical analysis for the model predictions. 

Table 10.5. Statistical Analysis of Gordon-Ng Model Results – Binned Data Set 

Statistical Value  
Average Error (kW) 2.36  
Error (%) 2.67  
r.m.s. error (kW) 4.01 
r.m.s. error (%) 3.86  

 
The unbinned, filtered data set was then modeled using the calibration results, and the results are 
shown in figure 10.15. 
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Figure 10.15.  Gordon-Ng Model Results - Building Chiller Filtered Unbinned Data Set 

Table 10.6 presents the statistical analysis for the full (filtered) data set. 

Table 10.6. Statistical Analysis of Gordon-Ng Model Results- Full Data Set 

Statistical Value  
Average Error (kW) 1.29 
Error (%) 1.89 
r.m.s. error (kW) 2.34 
r.m.s. error (%) 2.87 

 
An uncertainty analyses of the model predictions, due to experimental error was performed using the 
sequential perturbation method. The results are presented graphically, as error bars in Figure 10.16. 



 

Masters Project – Plan II 73 Priya Sreedharan 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

Measured Power (kw)

P
re

d
ic

te
d

 P
o

w
e

r (
kw

)

 
Figure 10.16.  Gordon-Ng Model Results With Uncertainty Error Bars -Building Chiller   

The uncertainty in model predictions due to measurement errors in the input data is estimated to be 
0.37 kW, or 0.40 %.  

10.4 COOLTOOLS/DOE-2 MODEL RESULTS 

Since full load data for the building chiller were unavailable, the CoolTools software was used to 
select a chiller curves that have already been fitted to the DOE-2 model.  Each parameter set in the 
library is tested using data from the chiller to be calibrated and the curve producing the lowest r.m.s. 
error is selected.  
 
Table 10.7 lists the reference conditions and parameters estimated by the CoolToolsTM automated 
calibration procedure from the measured performance of the building chiller.  

Table 10.7. CoolTools Automated Calibration Parameters and Reference Conditions 

Curve a b c d e f 
CAPFT 7.25E-01 4.67E-03 -7.40E-05 4.24E-03 -3.01E-05 2.95E-05 
EIRFT 1.07E+00 -1.50E-02 4.96E-04 5.95E-03 2.22E-04 -5.76E-04 
EIRFPLR 3.05E-01 2.76E-01 4.18E-01    
Qe,ref (tons) 160.68      
P,ref (kW) 108.72      
 
A comparison of measured and predicted compressor powers using the binned data set is shown in 
figure 10.17.  
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Figure 10.17.  CoolTools/DOE-2 Results - Building Chiller Binned Data Set 

The results closely resemble the results from the other models. Interestingly, all three models show a 
discontinuity between measured and predicted power at 105 kW. The similarities between all three 
model results are discussed in Section 11, as well explanations for the discontinuity. 
 
Table 10.8 presents the statistical analysis for the binned data model predictions. 

Table 10.8. Statistical Analysis of CoolTools/Doe-2 Model Results- Automated Calibration 
(Binned Data Set) 

Statistical Value  
Average Error (kW) 2.45  
Error (%) 2.73 
r.m.s. error (kW) 4.24 
r.m.s. error (%) 4.03 

 
The unbinned filtered data set was then modeled using the calibration results, and are shown in figure 
10.18. 
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Figure 10.18.  CoolTools/DOE-2 Results - Building Chiller Filtered Unbinned Data Set 

Table 10.9 presents the statistical analysis for the unbinned filtered data set. 

Table 10.9. Statistical Analysis of CoolTools/DOE-2 Model Results- Full (Unbinned & Filtered) 
Data Set 

Statistical Value  
Average Error (kW) 1.31  
Error (%) 1.90 
r.m.s. error (kW) 2.40 
r.m.s. error (%) 2.86 

 
An uncertainty analysis was performed on the model predictions to determine the influence of the 
uncertainty of the input data. This was determined from the binned data set. Again, the sequential 
perturbation method was used. The results are presented graphically, as error bars in Figure 10.19. 
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Figure 10.19.  CoolTools/DOE-2 Results With Uncertainty Error Bars - Building Chiller  

The uncertainty in model predictions due to measurement errors in the input data is estimated to be 
0.367 kW, or 0.41 %.  
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11. DISCUSSION 

11.1 SUMMARY OF RESULTS AND GENERAL OBSERVATIONS 

Table 11.1 contains a summary of the r.m.s. error's of the model predictions, as well as the r.m.s. 
error's of the uncertainty in the model predictions due to measurement error. The results for the 
building chiller are based on the binned data set. 

Table 11.1 Summary of Modeling Results 

 Model Prediction Error (kW) Model Prediction Uncertainty 
(kW)  

Laboratory Chiller Model 
Adjusted 
Data 

Original 
Data 

Building 
Chiller 

Laboratory 
Chiller 
(original data) 

Building 
Chiller 

ASHRAE 
Toolkit 

1.34 1.95  4.09 0.83 0.32 

Gordon-Ng 1.38 2.21 4.01 0.68 0.37 
DOE-2/ 
CoolTools 

1.92 2.42 4.24 0.58 0.37 

 
Based on the statistical analyses, the accuracy of the physical models (i.e., ASHRAE Toolkit, 
Gordon-Ng) as indicated by the r.m.s. error is similar, and within 0.04 kW for the adjusted data, and 
0.26 kW for the original data (where the adjusted data corrected the compressor power measurements 
for energy losses to the environment). The ASHRAE Toolkit performed slightly better in the case of 
the laboratory chiller, while the Gordon-Ng model performed slightly better with the building chiller. 
The empirical model results (i.e., DOE-2/CoolTools) were only slightly less accurate than the 
physical model results.  
 
The uncertainty in the model predictions due to experimental error was calculated using the 
sequential perturbation method. This method basically varied each input data by the maximum error 
of that sensor, one by one, to compute the individual uncertainties, from which the overall uncertainty 
was computed. This uncertainty was minimal, which was not surprising, as both projects used high-
quality temperature and flow sensors.  
 
LABORATORY CHILLER: The trends between the physical models are similar. However, the trends 
seen with empirical model results differed. This was a direct consequence of the calibration method, 
which separately used the full load and part load data.  The CoolTools software was very successful 
in calibrating the building chiller data to the DOE-2 curves; the CoolTools library, which contains 
over one-hundred pre-calibrated chiller curves, allows the calibration of part-load data possible.  
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BUILDING CHILLER RESULTS: All three model results show similar trends. In particular, a 
significant discontinuity between the predicted and measured compressor power at 105 kW is 
observed with all three models. In addition, data taken from the backup chiller in the building showed 
a similar pattern. This discontinuity, however, was not observed with the laboratory chiller’s results. 
This is discussed further in section 11.4.  
 
PARAMETER COMPARISON: Table 11.2 lists the various parameters estimated from the physical 
models. 'TK' refers to the Toolkit Model, and 'G-Ng' refers to the Gordon-Ng model.  

Table 11.2. Summary of Parameter Estimates 

Laboratory Chiller  

Adjusted Data Original Data 

Building Chiller 

Wlo – TK (kW) 18.09 26.82 41.40 
α − ΤΚ (−−) 0.00 0.28 0.00 
UAe – TK (kW/K) 92.49 68.54 54.54 
UAc – TK (kW/K) 170.37 171.36 135.98 
R – TK (K/kW) 0.037 0.040 0.034 
R – G-Ng (K/kW) 0.051 0.079 0.043 
∆ST  (kW/K) 0.058 0.080 0.134 
Qleak (kW) 35.26 105.65 12.05 

 
The laboratory chiller data exhibits significant energy losses from the compressor to the environment. 
Energy losses, as a percentage of compressor consumption, tend to be larger with smaller chillers 
(Bourdouxhe,1994). The compressor power measurements were corrected for the proportional 
electromechanical compressor losses, and both this corrected data set, and the original data set were 
used to calibrate all three models. While the accuracy of the model predictions was not affected by 
the electromechanical losses, the estimated heat leak parameter, from the Gordon-Ng model is 
significantly larger, as a percentage of compressor capacity, compared to the building chiller, and 
other studies (Ng, 1997).  
 
An unusual result is that the Toolkit model estimated larger conductance’s (UA’s) for the laboratory 
chiller, although the building chiller had more than twice the capacity. The thermal resistance’s as 
defined by the Gordon-Ng model are closer to expected behavior, although the thermal resistance of 
the laboratory chiller is only slightly larger than the thermal resistance estimated for the building 
chiller. The thermal resistance calculated from the Toolkit parameters does not match those from the 
Gordon-Ng model. This may be attributed to the treatment of environmental losses. The Gordon-Ng 
model estimates energy losses to the environment, whereas, the Toolkit model loses energy solely 
through the condenser, which accounts for the smaller thermal resistance’s from the Toolkit model. 
However, the thermal resistance estimated from the Gordon-Ng model corroborated this result. The 
loss parameters from both models followed expected behavior. In the case of the building chiller, the 
compressor loss term from the Toolkit model is larger than the leak term from the Gordon-Ng model. 
This is not the case for the laboratory chiller results. This results may be explained by the isentropic 
compression assumption in the Toolkit model, an idealization that is ‘corrected’ with a larger loss 
term. The leak term obtained from the Gordon-Ng model when using the original data is 
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unreasonably large. This questions the Gordon-Ng model's ability to treat chillers with environmental 
losses proportional to the compressor power.  

11.2 MODEL LIMITATIONS  

This section discusses the assumptions and limitations of each model. 

11.2.1 ASHRAE TOOLKIT MODEL 

The following assumptions are made in the formulation of the model:  
¾ Losses to environment are considered negligible.  
¾ Motor inefficiencies are modeled completely as sensible heat gain by the refrigerant, prior to 

compression. 
¾ The refrigerant in the compressor is treated as an ideal gas. 
¾ De-superheating and sub-cooling in the condenser are ignored, resulting in an inflated condenser 

heat transfer coefficient. 
¾ For centrifugal compressors, compression work is considered isentropic at full-load and part-load.  
¾ Calibration of the original model for centrifugal chillers requires full-load data. 
 
In addition to the above assumptions, one more assumption was made in order to convert the model 
into a universal chiller model, independent of compressor type, and slightly altered the original 
equations: 
 
The Toolkit authors modeled the part-load condition as a throttling process prior to compression. This 
pressure drop resulted in an increase in the specific volume of the refrigerant, which in turn achieved 
a reduced refrigerant flow rate. The reduced or "part-load" refrigerant flow rate was then used to 
compute work input to the compressor. Since the original model structure maintained both 
compressor power and evaporator load as 'outputs', this "throttling" was the only way to force part-
load conditions. However, in converting the model to a usable form, it was restructured, such that 
compressor power was an input, and evaporator load an output, and then, again, such that power was 
the output (to match the other models). In computing refrigerant flow rate from useful compressor 
work, the specific volume of the refrigerant, in the absence of such a throttling process was used.  
 
The limitations found with this model as applied in this study include: 
¾ Calibration is achieved through the Nelder-Mead direct search method, which is considerably 

more time-consuming and involved than simple linear regression. 
¾  The model equations are solved in an iterative manner, and convergence, while improved using 

the secant method, is not always guaranteed. 
¾ Refrigerant thermodynamic properties are required. 

11.2.2 GORDON-NG MODEL 

The  Gordon-Ng model formulation is similar to the Toolkit model in some aspects, but different in 
others (see Section 5.3 for a comparison between the models) . Unlike the Toolkit model, which is a 
component based approach, the Gordon-Ng model is a systems approach. The model has the 
following limitations:  
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¾ While the Toolkit model neglects environmental losses, the Gordon-Ng model estimates an 
average equivalent energy leak (a combination of evaporator and compressor losses). However, 
this quantity does not adequately account for losses proportional to compressor power.  

¾ Unlike the Toolkit model, this version of the model does not incorporate variable evaporator and 
condenser flow rate, however the model authors have devised an alternate form to incorporate 
variable condenser flow rate.  

¾ The total thermal resistance is estimated, and represents the sum of the condenser and evaporator 
resistances. The effectiveness of each heat exchanger is not evaluated. 

11.2.3 DOE-2 / COOLTOOLS MODEL 

The following limitations were found with the DOE-2/CoolTools model: 
¾ Although the CoolTools calibration was very successful for the building chiller, it is not clear 

how much data are required for a successful calibration.  
¾ The parameters have no physical meaning.  
¾ Condenser and evaporator flow rate were assumed constant, and therefore is not valid for chillers 

with variable water flow rate. 

11.3 BUILDING CHILLER MODEL PREDICTION DISCONTINUITY 

A strange discontinuity is observed in the all three sets of modeling results for the building chiller. 
This discontinuity was not present in the laboratory chiller model results. The model residuals were 
compared with energy balance, and the condenser and evaporator inlet temperature difference, which 
is an indicator of pressure lift.   
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Figure 11.7. Residual vs. Temperature Lift – Building Chiller Binned Data 
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Figure 11.8. Residual vs. Energy Balance – Building Chiller Binned Data 

Figures 11.7 and 11.8 demonstrated a strong correlation between residual and temperature difference, 
but not with energy balance. The residuals were significantly larger at the highest temperature 
differences. Further analysis showed that the chiller was operating more efficiently in the high power 
regions where this greater temperature difference existed, than would be expected for those particular 
operating conditions. Figure 11.9 shows the measured chiller efficiency (1/COP) as a function of 
evaporator load. The difference between the evaporator water inlet temperature and condenser water 
inlet temperature is scaled and is also shown on the figure.  
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Figure 11.9. Measured Efficiency – Building Chiller Binned Data 

Consider the circled portion in the figure: Based on the increase in temperature difference between 
the evaporator and condenser inlet water conditions, there appears to be a pressure increase in this 
circled region. However, this ‘pressure increase’ did not cause a decrease in efficiency, as would be 
suspected. Note, the '1/COP' graph did not show a similar type of discontinuity. However, the models 
would expect power consumption to increase with an increase in pressure lift, which explains the 
discontinuity in the model results. Currently, there is no explanation for the chiller operating more 
efficiently than would be expected in this region. We are pursuing this problem with chiller 
manufacturers and hope to have closure in the near future.  
 

11.3.1 LARGE RESIDUALS IN THE BUILDING MODEL PREDICTIONS (FULL DATA SET) 

All three models exhibited similar regions of high residuals, where model prediction error was 
significantly large. In an FDD scheme, these large residuals would trigger the possibility of a fault. It 
was therefore important to identify whether these residuals were caused by faults, or were due to 
inadequacies in the model(s). It was found that each grouping of residuals came from a particular day 
of chiller operation. All but one of the residual groups found from the model predictions graph (s) 
were also identified as isolated data groups in the efficiency curves. This is most easily explained 
with the aid of figures. Refer to figures 11.10 and 11.11 to see which dates correspond to the various 
irregular groups.  
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Figure 11.1.  Residual Analysis – Gordon-Ng Model Results - Building Chiller Filtered Data  
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 Figure 11.2. Residual Analysis -  Efficiency - Building Chiller Filtered Data  

The sensor failure from July 7, 1998 was identified earlier, and accounts for the low power (less than 
100 kW) positive residuals (predicted power greater than measured power). Recall, the other set of 
positive residuals at high power was discussed earlier. The remainder of the residuals could not be 
explained either by a sensor failure, which would have been observable from the energy balance. In 
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these cases, the modeled residuals were accompanied by efficiency deviations on figure 11.11. Each 
of these groups were compared with points of similar evaporator load to determine if the chiller was 
operating in an expected manner. It was found that the greater inefficiencies found on April 16, July 7 
and 12, 1999 could partially be explained by a decrease in evaporator temperatures, and/or increase in 
condenser temperatures (indicating an increase in pressure lift), which would indicate an increase in 
power. However, the model predictions showed that these power differences (when compared with 
operating days of similar evaporator load) should not have been quite as large as they were.  
 
In addition to the lower evaporator water temperatures, the evaporator water flow rate from April 16 
was significantly less than on September 17, 1998, the date used for comparison purposes. The 
evaporator temperature difference was larger to compensate for the reduction in flow rate, such that 
evaporator loads were still equivalent between the two days. The measurements demonstrated that in 
order to achieve a similar evaporator load, with reduced flow rate, the refrigerant must be cooled to a 
lower temperature or its flow rate must be increased to cool the evaporator water to a lower 
temperature, resulting in an increase in compressor power. Neither the CoolTools, or Gordon-Ng 
models account for variable evaporator water flow rates,15 which explains why the predicted power 
from those models were less than the measured power. The Toolkit model, which does account for 
variable evaporator flow rate did predict lower power, but was closer to the actual power 
measurement. Since 95% of the filtered data had evaporator flow rates that were within one standard 
deviation of the average flow rates, this factor alone need not favor the Toolkit model over the other 
models.      
 
The residuals from April 14, 1999 could not be explained. When the operating conditions were 
compared with those of October 20, 1998 (which had a similar evaporator load) it was found that the 
evaporator temperatures were slightly larger on April 14, which should have resulted in lower 
inefficiency on April 14. The actual measurements, however, showed smaller inefficiencies for 
October 20, contradicting the hypothesis based on the evaporator conditions. This explained why the 
predicted power measurements were smaller than the actual measurements on April 14; in fact, the 
predicted power measurements were smaller for April 14, than for October 20.  
 
In summary, many of the residuals were caused by anomalous behavior of the chiller, rather than by 
limitations of the models. Further consultation with industry experts may help to explain the patterns 
in efficiency that did not follow expected behavior. In addition, examination of another year of data 
from this same chiller may be helpful, as well as examination of operating data from a different 
building chiller. Refrigerant measurements may also help diagnose such behavior, and could be used 
to build a more robust component modeling scheme. 
 
 
 

                                                      
15 Although, (Gordon, 1999) addressed variable condenser flow rate, and modified their model accordingly. The 

new model became non-linear in the parameters. 
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12. CONCLUSIONS  

The ability of the models to reproduce the observed behavior, as indicated by the r.m.s. prediction 
errors, is quite similar.  The similarity of the graphs of predicted vs. measured power indicates that 
the dominant sources of error are either in the measurements or result from behavior that none of the 
models treat.  The variation in the parameter values from model to model and chiller to chiller can be 
explained in terms of the assumptions of the models.  
 
¾ The isentropic compression assumption in the Toolkit model results in a larger estimate for the 

loss term, as compared to the Gordon-Ng model, which accounts for entropy generation in 
compression.  

¾ The Gordon-Ng model's assumption of constant heat losses/gains over the operating range results 
in unreasonably large estimates of the leak parameter, questioning the ability of this model to 
treat chillers with heat losses proportional to compressor power.  

¾ The Toolkit model, as used in this study, produced larger estimates of the heat exchanger 
coefficients (UA's) for the laboratory chiller, although the building chiller had a significantly 
larger cooling capacity. The estimates of thermal resistance, as defined in the Gordon-Ng model, 
were larger for the laboratory chiller, though not as large as would be expected from the 
difference in the cooling capacities of the two chillers 

 
Of the first principles models, the Gordon-Ng model has the advantage of being linear in the 
parameters, which allows more robust parameter estimation methods to be used and facilitates 
estimation of the uncertainty in the parameter values.  The ASHRAE Toolkit Model may have 
advantages when refrigerant temperature measurements are also available since it should be possible 
to predict the expected performance of the compressor, condenser and evaporator separately with 
more confidence, and with more meaningful parameter estimates, than has been found to be possible 
with only water side thermal measurements.  The DOE-2 model can be expected to have advantages 
when very limited data are available to calibrate the model, as long as one of the previously identified 
models in the CoolTools library matches the performance of the chiller in question. 
 
None of the models could explain the anomalous behavior of the building chiller, which showed a 
significant discontinuity between predicted and measured compressor powers at high power. The 
chiller appeared to be performing more efficiently than would be expected based on the operating 
conditions. A more robust modeling approach, that incorporates internal, refrigerant measurements 
may explain such behavior.   
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