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FOREWORD

This paper describes an application of the fundamental methods of
physics to solve a problem of environmental and economic interest: the
description of the thermal performance of passive solar buildings. Such
a description is of great practical interest to building designers;
however, this paper is not intended to be of use to architects and
engineers in its present form. Its intention is to provide a theoretical
basis for understanding passive solar buildings; further effort is needed
to develop rules of solar engineering.

The reader of this paper is assumed to have a background in physics
and its application to buildings. Since building physicists have not yet
developed analytic models of general applicability, this paper must derive
its equations from first principles. This has resulted in a lengthy
exposition. Because of the length, I have attempted to summarize the
results of Section 2 early in the section. This summary is meant only
as a guide to the reader, and so it presents many of its statements
without proof or full explanation. More complete derivations are found
later in the paper.

The passive solar problem has been of interest to physicists for
several years. It was discussed in detail in the American Physical Society's
summer Sstudy on efficient uses of energy (Ref. 1). Both of my advisors
on this project (Prof. Sam Berman and Prof. Art Rosenfeld) were involved
in the summer study and are highly interested in passive solar. Working
with them provided many opportunities to look at passive solar buildings

in more analytical detail.
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Several approaches to modeling buildings were underway at Lawrence
Berkeley Laboratory when I began work on this paper. Art Rosenfeld had
developed a building model called TWOZONE which was intended to study
the effect of south-facing windows on heating loads, while Sam Berman
and Prof. Bob Richardson of New York University were working on analytic
approaches to the study of thermostated furnace performance. My initial
work with them led to this project.

In addition, the problem of passive solar heating arose in the
context of the California residential energy-conservation building code.
The 1975 code restricted windows to 20% of floor area, which would have
severely discouraged passive solar building construction. Attempting to
find conditions under which more glass could be allowed pointed out the
lack of understanding of heat transfers in passive solar buildings, and
suggested the approaches which are developed in this paper.

A number of people provided assistance and encouragement during the
course of this project; I can only mention a few here. Stan Keniston
worked with me on the California building code problem; this work provided
some of the impetus to start on this project. Robert SondereggeT, now
at LBL, has also been studying simplified building models; his work on a
different form of lumped parameters was helpful in my research. Robert
Clear discussed analytic building models with me during the earliest and
most difficult part of this project, and helped to clarify the conceptual
basis for these analytic models. Bob Richardson, in addition to his
complementary work on analytic building models, read the earlier, less
comprehensible versions of this write-up and helped me translate them

into their present semblance of English. However, all present short-



comings in that regard remain the responsibility of the author.

I would like to thank Bob McFarland and Doug Balcomb of Los Alamos
for the data they provided on their test buildings. There is a dearth
of good hourly data on free-floating passive solar buildings; the LASL
group has the only reliable and complete set of data I was able to find.

I am also grateful to the Technical Information people at LBL for their
help in the production of this paper from the original handwritten text
and scrawled figures. Paula Bjork took responsibility for the typing
with some assistance from Deberah Craig. Drawings were done by Antoinette
Czerwinski.

Members of my thesis committee, Profs. Owen Chamberlain and John P.
Holdren, supplied thoughtful comments on the content and exposition of
this paper, which have been incorporated into its present form.

Finally, some mention is needed of the larger community of Berkeley.
This community has been supportive of creativity and intellectual freedom
throughout the nine years I have spent here; the feelings of acceptance
and freedom that I have experienced were a crucial ingredient in the

accomplishment of this project and others.
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LIST OF SYMBOLS

Ax’ x=e,f,p,w area of a material surface
Alw) : a building response function
A (subscript) : ambient

B(w) : a building response function
C : heat capacity of a material
C : heat capacity per unit area
Clw) : a building response function
H : heater output

K : thermal conductivity

N : number of heavy materials in a building
Q : heat flow

R : thermal resistance

Rl’RZ : materials response functions
R (subscript) : TOoOom

S : solar gain

T : temperature

T (subscript) : Trombe wall

U : heat transfer coefficient
U heat transfer coefficient times area
a (subscript) : front surface of Trombe wall
cp : heat capacity per unit mass

(constant pressure)

c (subscript) : Trombe wall air channel; also concrete
(Sec. 3) or carpet (Appendix 2.5A and
Table 2.3), or continuum model (Sec. 2.5)

d : thickness of a material
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d_ : Fourier expansion coefficients of the
diurnal solar gain function

d (subscript) : day

e (subscript) : envelope walls

f (subscript) : floor

h : film heat transfer coefficient

h film heat transfer coefficient times area

i imaginary number (/-1 )

i (subscript) : inside of material (room side)

j (subscript) : indexing subscript

k : extinction coefficient

2 (subscript) : lumped model

n (subscript) : night, also an index for summation

o (subscript) : outside of material

P, ¢ nth pole of a function

p (subscript) : partition wall

q (subscript) : quick

r (subscript) : thermal resistance

s (subscript) : surface

t time

td : the time at which the building ceases
to collect solar energy for the day

t (subscript) : thermostat

w (subscript) : wall; also weather-frequency

X,¥,2 : distance into a material

z nth zero of a function

o : fraction of solar gain absorbed on a

given surface
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flux of a

time constants

primary decay constants for a building

dimensionless distance into a material

mass density

an equivalent heat transfer coefficient

material response function for the
lumped parameter model

frequency

the frequency 2y radians per 24 hours

the frequency of the solar gain function



1. INTRODUCTION

Energy is used in a wide variety of ways in the developed
world, but in almost all its uses, the desired result is the
accomplishment of some non-energy-related task. The physicist's
approach to analyzing patterns of energy consumption has been to
compare the energy requirements of present technologies or devices
for accomplishing a task with the theoretical limits to energy use.
This method reveals where present processes are inefficient and
can suggest where new ideas might be sought.

Analysis of energy uses in the United States economy shows
that almost all tasks that use significant amounts of energy are
done very inefficiently, both thermodynamically and economically.

The American Physical Society study on efficient energy use (Ref. 1)
found that most processes have second-law efficiencies of 10% or

less. Our research at Lawrence Berkeley Laboratory has shown more
detailed examples of energy waste; we have never found any process

for which the life cycle costs of energy use have been minimized.

That is, in all tasks we have studied, the economic return on an addi-
tional investment in energy conservation (beyond existing practice)
would have been. justified at existing energy prices and interest rates.

To illustrate the conservation potential implied by present
inefficiencies, we display in reference 22 a list of several dozen
conservation measures all of which have acceptably large returns
on investment which would, taken as a whole, save 25% of California's

gas and electricity use in ten years. Collectively, they have an



annual return on investment of 40%. Most of these measures would
have been economic at pre-1973 low energy prices, but to date very
few of them have been implemented on a wide scale.

As an example, we note that in 1970, a typical owner of & new
home in Northern California could have saved about $50 a‘yearcon his
heating bill by insulating his walls, while the cost of this improve-
ment would have been $125.1 Despite this large return, very few
new houses had insulated walls in California until 1975 when they
were required by law. In similar fashion, the efficiency of other
large energy users — home air conditioners and commercial chillers,
refrigerators, lighting equipment, hot-water users, etc. — could be
improved by a large amount (typically a factor of two) by readily
available cost-effective conservation measures.

The study of energy-efficient methods to accomplish tasks is
most easily organized by end-use ( e.g. space heating, refrigeration,
etc.). As an example, we show in Fig. 1 the apportionment of California
energy among residential end uses, as derived from Ref. 23. Residential
electricity is about 40% of total electric consumption in California;
residential gas is about one-third of the total for that fuel.

As illustrated in Fig. 1, energy consumption is divided among
a number of relatively important end uses. Although some uses are
larger than others, no single end use dominates the residential
sector. So if one is interested in making large savings in overall
energy requirements (or in reducing growth in energy use),

conservation strategies must be studied for a variety of end uses.



Different strategies are applicable for different uses and
for different time scales. In the short run, the properties of
energy using equipment are fixed and one can save energy only by
better management (e.g. turning off lights in unoccupied offices
or rooms) or by changes in habit or comfort (such as turning down
thermostats at night). These changes generally result in relatively
small savings unless the operation was grossly mismanaged in the
first place.

In the longer run, retrofits of existing equipment can be
attempted, such as insulating the ceiling or walls of originally
uninsulated structures. This process is more costly than it would
be for new construction, but the savings can be large: 30% of
original energy use for ceiling insulation and another 30% for
walls, based on computer simulation of northern California climates.2

On a similar time-scale, replacement of appliances with
the more efficient models currently on the market can save 40%
or more of existing energy needs.3 New buildings can be constructed
in more energy-efficient ways. Mandatory efficiency standards in
California will lead to a savings of 15% or more for commercial
bu.ildings4 and as much as 60% for residential buildings.5

Over a longer time period, more fundamental design changes
can be made. One recent study of refrigerator redesigns estimated
potential savings of 2/3 through a few relatively simple and high-
payback improvements.6 The effects of adding some more advanced
insulation measures for houses are shown in Fig. 2, which graphs

space heating needs as a function of conservation expenditures for



Sacramento and Chicago climates. Although many of the measures are
cost-effective in Sacramento only under the assumption of high future
costs of gas, almost all the measures pay for themselves in Chicago.

Figure 2 raises some interesting questions, which we will
discuss at length. Figure 2a on the Sacramento house shows that a
sufficiently tight building requires essentially no heat at all. In
other words, the accidental heat gains from sunshine and appliances
balance the heat losses almost all the time. At some point one could
substitute an occasional tolerance to cooler temperatures or more
solar heating for one of the insulation steps and reduce costs,
provided one could predict the results of the step.

Figure 2b on the Chicago house shows a potential reduction
of heat load to 120 therms (120 ><105 Btu or 12.7 ><109 Joules); this
compares to more typical heat loads for that area of over 1000 therms.
But further reductions in heat loss would tend to be less cost-
effective than the measures described in the figure.

For both of these climates, the next step in the analysis
would be to look at possible savings in heat load through the increased
use of solar heat gains. As we have mentioned, the collection of
sunlight through the windows is already contributing towards reducing
the furnace load in both houses. Increasing the window area might
further reduce space heat needs in Chicago, or lessen the requirements
for insulation in Sacramento.

The trouble with this path of inquiry is that most present
methods of modeling buildings are incapable of treating structures

with large solar gain. Although the state-of-the-art building models



treat quite precisely the heat transfers driven by temperature
differences, their treatment of solar gains is much more approximate.

In a real building, some fraction of sunlight incident on
a window is transmitted into the interior. The direct beam component
first strikes the floor or a piece of furniture, or perhaps an
interior partition wall. Depending on the properties of the receiving
surface, some portion of the energy is absorbed, and the rest is
reflected. The reflected light, plus the diffuse sunshine from the
window, strikes other surfaces in the room, is re-reflected, etc.
Eventually all the sunshine is absorbed on some surface.

If the building models treated solar gain in detail, they
would use their calculations of solar position in the .sky to find the
directly illuminated area within the building, and calculate solar
absorption for each area of interior surface for each hour. They
would then use these snlar heat gains in calculating surface
temperature for different sections of each material.

In fact, the current treatment of solar gains is highly simplified
compared to this description. The U.S. National Bureau of Standards
computer program NBSLD (Ref. 11) assumes that solar gain from a window is
absorbed uniformly over all interior surfaces (floor, ceiling, etc.)
for all hours of the day.8 kThe Lawrence Berkeley Laboratory program DOE-1
(Cal/ERDA) (Ref. 18) is designed to simulate building model results in which
the average solar gain for each surface is adjusted to be consistent
with the exact modeling described above for only one specific hour and
one specific building geometry and one set of surface reflectances.

Only the thermal mass of the room is varied. Weighting factors are

used to calibrate DOE-1 to these runs for light, medium, or heavy-weight



buildings. These three sets of weighting factors, which are appropriate
for an office building with south-facing windows during the summer, are
used to model the building response to all solar gains through all
windows during all seasons.

While these simplifications are probably adequate for a
building with relatively small solar gains (small in comparison
with conduction losses or internal loads), they break down for passive
solar buildings with large window areas.7 So the greater the use
of solar-collecting windows to design energy-conserving buildings,
the more inadequate present building models become.

Furthermore, the response of the building varies greatly
depending on the habits of the occupants. In Fig. 3 we plot temperature,
both inside and outside the house, furnace output, and thermostat
set points as a function of time for the first four days in January
in Chicago. It describes the response of the best-insulated house
at the right of Fig. 2. Notice that on day 1 and day 4, the furnace
shuts off when the sun is out, even though ambient temperatures are
below 21°F (-6°C) at all times. On day 4, the sun heats the house
up from the thermostat setpoint of 70°F (21.1°C) to 76°F (24.4°C)
during the afternoon. As window areas increase from the assumed 20%
of wall area used in generating this figure to 40% or even 80%,
further heating may occur.

Whether the house overheats or whether it stays within a
comfortable range depends both on the heat storage ability of the
house and on the thermal preferences of the occupants. For example,

if the house is allowed to cool off more during the night, it can



store more solar heat before it reaches an unacceptably hot temperature
the next day. This results in a tradeoff between comfort and amount
of solar energy stored. Such tradeoffs are difficult to treat in
general because one cannot measure comfort in units which are
comparable to heat or cost. They can be treated in an individual

way by a resident about to construct or buy a house, but only if he

can understand the thermal performance of the building in advance.

Outline

The rest of this paper is devoted to the derivation of an
analytic model of building performance which can be used to develop
an understanding of building response. Extensions and amplifications
of this model can probably be developed as a design tool for new or
retrofit buildings. The model is developed with the idea of describing
buildings like the one discussed in Fig. 3 with large solar gain and
tight insulation, but the theory should be generally applicable.

Section 2 describes the central equations and assumptions
used in the model, and gives the solutions to a lumped-parameter
and a distributed-parameter model. The derivations are performed
in detail in a set of appendices whose numbers (2.3, 2.4, etc.)
correspond to their analogous parts of Sec. 2.

Section 3 describes some experimental tests of the
relationships derived in Sec. 2. Using data from the test buildings
at Los Alamos Scientific Laboratory (LASL), we compute model
response and compare it to measurements. Agreement between the

data and the predictions is good.



The model described in this paper is self-contained and
analytic — that is, it proceeds from fundamental laws of physics
to its solution through analytic, as opposed to numerical, methods.
All parameters used can be derived from physical data on materials
properties or from weather data. Since numerical approaches are
not needed, the calculations can be performed with pencil and paper
and a hand calculator or slide rule.

Analytic models are not common in the building science
literature. In fact, dynamic models as a whole are a relatively
new development. Present building models are based on the concept
of response factors, which describe the response of a component in
a building (e.g..a wall surface temperature) at a time 't' in terms
of temperatures at earlier times t, t-At, t-2At, ... (where At is
usually taken to be one hour) multiplied by response factors for
that hour. The response factors were first derived by modelling a
slab of material as a chain of resistances and heat capacities in
series. Currently, response factors are derived from numerically
inverse-Laplace-transforming solutions to the diffusion equation.

Because of the amount of computation required to derive the
response factors and then to solve the time series in which they
appear for each hour and for each building component, response
factor models are always handled on large computers. One side-
effect of the computerization is that the models tend to function
as a '"black box". Since the effects of various elements of the

building and of weather conditions are added together numerically,



there is no way to determine a priori which factors are responsible
for the major features of & building's performance and which ones
are unimportant. In addition, any errors in the model or
approximations which are not accurate for a particular situation
cannot readily be seen unless the model starts giving absurd results.
One loses physical intuition in such an approach; the only way to
find out what is really going on in the model is to make a large
number of parametric runs, varying parameters which the modeller
guesses will be important.

An analytic model, in contrast, will often show by its
structure or the form of its equations which effects are dominant.
For example, the distributed parameter model of Sec. 2.4 gives the
response of room temperature in terms of relatively simple functions;
the form of the key equation provides some insight into the expected
results.

Also, a simple model of a building allows the determination
of some of the parameters experimentally using a comparatively
simple setup. Some of the linearities that show up in Sec. 2 can
be exploited in reducing experimental complexity. In Sec. 3, we
average over some large areas to obtain interesting theory vs.
experiment comparisons with only a few measurements.

However, the models derived in this paper have more
limitations than the computer models. The description of the building
must be more elementary, and the response to complicated management
schemes and even normal thermostatic control of a furnace cannot be

handled. But, one can learn a lot about the heating and cooling needs
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of a building by studying how its room temperature responds to solar
and temperature inputs. Also, the intuition gained by studying the
analytic models can be applied to writing better computer simulations.
The mathematical formulation of the two types of model is parallel,

so that understanding gained from studying the analytic model can be
applied straightforwardly to improving the computer models. For
example, programs like DOE-1(Cal-ERDA) currently model buildings by
first computing heating and cooling energy needed to maintain a

fixed thermostat setting, and then calculating the results for

varying thermostats (e.g. night temperature setback) as a perturbation.
The analytic models in Sec. 2 and 3 describe the response of a house
which has freely floating temperature at all times. Application of
this model to some well-insulated buildings shows that very

little heating or cooling will be required for ''typical' weather
conditions. For more extreme weather, some climate control will be
needed. But it will probably be more efficient to model the heating
and cooling loads as perturbations to the floating-temperature solution,
rather than vice versa.

Both analytic and computer-oriented passive solar building
models are likely to be useful as tools in designing more efficient
buildings.

The analytic methods are more suitable for designing simple
buildings for a desired response to a design day, and perhaps for
equipment sizing. As we have mentioned, they are also useful in
developing a feel for how the building works. Computer models are

more practical for estimating annual energy use, which can be employed

in making economic tradeoffs, and for modelling complicated structures.
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There is a large meed for such improved modelling; very few new

buildings are taking advantage of passive techniques, in part because

of the lack of proven design rules.

Passive solar modelling is worthwhile as a tool for imple-
menting one important conservative strategy — the use of building
design to take advantage of '"free' energy from the environment. As only
one element of good energy-conserving design, it cannot be credited with
a fixed or definable energy savings potential. However, the whole
range of building energy strategies can reduce space-heating use to

near zero, eliminating one of the major causes of energy demand.
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Section 1 Footnotes

1. We use the TWOZONE runs of Ref. 8 to predict heating energy
savings for insulating the walls of a typical 1450 ft2 single-
floor house which is assumed to have ceiling insulation (R-19)
already installed. At 1970 prices of 10¢ a therm (therm==105 Btu)
for natural gas fuel, the savings are about $50 per year. We
estimate costs for installing insulation in the walls of a new
house from Means (Ref. 27) to be about 13¢ a square foot. The
reference house has a wall area of about 1000 ft.2 resulting in
an extra cost of $130.

2. Precise estimates of energy use before and after retrofit are
found in Ref. 8. This modelling effort is based on the Oakland,
California, climate, but runs for other California cities show
similar percentage savings. Observation by California utilities
have found energy savings of about 25% on the average for attic
retrofits.

3. The 40% savings refers to the use of the most efficient existing
refrigerator in each size and features class instead of a unit.of
average efficiency. Larger savings are possible by changing
features, e.g. by switching from a fully automatic defrost system
to a partial automatic defrost, or from a side-by-side style to
a top-freezer arrangement.

4. The commercial building standards in California are formulated
in terms of maximum lighting power levels or maximum annual

energy use per unit area. Compliance with the code will result
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Section 1 Footnotes {(cont.)

in buildings which use 15% less energy than the average new
building, based on simulations using DOE-1 (Cal-ERDA) (see Ref. 18).
However, some buildings will use less energy than the legal maximum
(some already do), so actual savings will be much larger than 15%.

5. The 60% savings are for northern California climates where, in
1979, double glazed windows will be required. A double-glazed,
insulated house uses 60% less heat than a pre-standards house
with only attic insulation, according to Ref. 8.

6. The refrigerator study is listed as Ref. 26; its significance for
overall patterns of energy demand is discussed in Ref. 24.

7. Personal communication, G. P. Mitalas, 4 July 1978.

8. Some recent versions of NBSLD allow the user to specify how much
solar heat is absorbed on each surface. However, solar heat

absorption on partition walls cannot be simulated.
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CALIFORNIA RESIDENTIAL ENERGY USE

SPACE HEAT GAS

WATER
HEATER

SWIMMING

POOL "
HEATER CLOTHES DRYER ELECTRICITY

REFRIGERATOR k

AIR
CONDITIONING

HOT WATER

LOSSES

PERSONAL
USES

CLOTHES WASHER
DISHWASHER

WATER
HEATERS

DISHWASHER
FREEZER
CLOTHES DRYER
*Elactricity converted to Resource Energy at 11,000 Btu/kWh
Sources:

“Electrical Energy use in California: Data Collection and
Analysis”, LBL Staff, UCID-3847

“Energy Extension in California, Context and Potential
Impact”, P. Craig, D. Goldstein, R. Kukula, A. Rosenfeld,

LBL-5236
XBL 774-703B

Fig. 1. Apportionment of California residential ehergy use among
the major end-uses. Data are for the year 1975. Electricity
is equated to resource energy using the conversion 11,000 Btu =
1 kWhr (31.0% efficiency) to account for average power plant
efficiencies and transmission losses; except that air conditiomner
electricity is converted at 20,000 Btu/kWhr (17.1%) because
of the lower efficiency of peaking power plants (e.g. gas

turbines).
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Heating loads calculated for Sacramento

Heating energy use for a new house as a function of expenditure
on insulation. Heating loads are calculated for Sacramento
(Fig. 2A) and Chicago (Fig. 2B). The bar at the left
illustrates a house insulated with R-19 ceiling insulation,
R-11 wall insulation, R-19 floor insulation, and with single-
pane windows. The bar is divided into segments labelled
"ceiling, walls'", etc. to indicate which part of the house

is responsible for what fraction of heating energy. The

next bars progressively add insulation measures such as
double-glazing, better sealing for lower air infiltration, etc.
The right-hand scale gives the annual cost of heating; it is
equal to heat load (left scale) divided by the furnace
efficiency of 60% and multiplied by the cost of fuel.

For Sacramento we use future fuel prices of 60¢ per therm

(see Ref. 24); for Chicago we assume present fuel prices of
25¢ per therm. The heating loads were computed using

TWOZONE (Ref. 8).
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2. PASSIVE SOLAR BUILDING MODELS

2.1 Introduction

Passive solar buildings are structures whose natural response to
ambient sunlight and temperature conditions produces room temperatures
which are within the comfort range of the building's occupants. An
ideal passive solar building requires no heating or cooling at all;
real passive buildings may require small amounts of climate control or
may approach the ideal. Numerous ideas have been presented for the
conceptual design of such buildings; the most easily understood schemes
involve collecting sunlight through south facing windows.

Although windows are large sources of heat loss due to their
high heat conductance, south-facing windows can collect more heat from
sunlight than they lose by conduction over the course of the winter. ’

If all this heat can be used, ihcreasing the amount of south-facing
windows will reduce the amount of energy needed to heat the building.

A number of passive solar houses have been built over the past
five years;3 some of them are completely heated by sunlight. One example
of passive solar construction is shown in Fig. 1. However, the design
of most of these buildings is based on ad hoc rules of thumb or the
intuition of the builder. These methods appear to work in many cases,
but there are also many (poorly documented) failures. For example, one
attempted passive solar house regularly heated up beyond 95°F (35°C)
on sunny winter days and then rapidly cooled to uncomfortably low
temperatures at night.22

Even the successful passive solar buildings cannot be considered

to be optimal designs. For example, the Kelbaugh house in New Jersey



-19-

underwent several retrofits after the first winter to mitigate problems
observed by its occupants.21 Several other passive structures have
required similar modification. This iterative approach is more costly
than installing all the needed features during comnstruction. Conversely,
many passive houses have performed much better than expected. This,
too, may be a problem if it results in oversizing the heating and
cooling equipment. Additionally, the possibility that the building
may not work "as planned" is a deterrent to the widespread application
of passive solar designs.

To design a predictably well-performing passive building
requires the use of an accurate model predicting building response,
as well as an intuitive understanding of the heat transfers which
are responsible for this performance. To this end, we present in
this section a simple analytic model for calculating passive solar
building response. The emphasis is on scientific clarity and
simplicity. While it is our intent that the model be developed into
a design tool for architects and building designers, in its present
form it is not suitable for general use.

This model is most easily used to calculate "floating' or
non-thermostated room temperature as a function of the driving forces
of solar energy gain, ambient (outside air) temperature, and heater output
(or internal heat generation from lights, appliances, etc.) It can also
be used to calculate heater output needed to maintain a fixed room
temperature, but this solution is generally of less interest. The
mixed mode, in which room temperature floats between fixed thermostat

positions, is much messier to handle and is not discussed in this paper.
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Studying the floating temperature response of a room to different
weather conditions can provide insight into the important parameters
affecting building performance, and can suggest how to choose optimal
values of building parameters to get a desired response.

Our model is developed from the basic equations of heat transfer
and proceeds by analytic (as opposed to numerical) methods to the final
form of the solution. Evaluation of a solution can be performed with
a pencil and paper and hand calculator or slide rule; this is typically
a one-hour operation with a 98-step programmable calculator, or 15
minutes with a card-reading calculator.

The central equations are heat balances for interior building
surfaces (on which sunlight is absorbed) and conduction and diffusion
equations for heat transfers through materials.

Our model parallels many computer models in terms of its basic
equations; however, it differs in two significant ways. Firsgt, it
solves the room heat balance algebraically, producing equations for
room temperature in terms of building parameters and driving forces.

In contrast, computer models solve the equations of heat transfer for
each element of the building to produce sets of time series. The
time series are added numerically yielding numerical expressions for
the relationships between room temperature and the other weather
variables. This type of expression tends to obscure the parametric
dependences.

Second, while the computer models handle thermal radiation very
precisely, they handle visible radiation (sunlight) in a very crude

fashion. Typically, sunlight is assumed to be absorbed uniformly over
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all interior surfaces in the room.16 In contrast, our model allows the
user to specify varying proportions of solar absorption on each surface
(e.g. more sunlight absorbed on one wall than on another) or in the

room air. This option makes a substantial difference in thermal response,
as shown in Fig. 2.

Figure 2 graphs the room temperature of a passive solar building
with wood frame walls and concrete floor under four sets of assumptions
about solar energy absorption. The solid line labelled 'A' gives room
temperature as a function of time for the case in which 6/7 of the
sunlight is absorbed on the floor and 1/7 is absorbed on the walls and
ceiling. Line 'B' describes the same house with only 5/7 of the sunlight
absorbed on the floor and 2/7 on the walls; while in case 1cr 3/7 of
the sunlight is absorbed on the floor and 4/7 on the walls. The dotted
line labelled 'D' graphs the case in which all the sunlight is absorbed
on light furniture or carpets.

As show in the figure, there is a noticeable difference between
the four curves; this difference illustrates the importance of being
able to specify where solar energy is absorbed. Any model which does
not allow this specification (or calculate it) implicitly assumes
that one of these curves is always correct.

The importance of correctly modelling where solar energy is
absorbed comes about because the response of a passive solar building
involves considerable amounts of heat storage. The quantity of heat
stored by a building depends strongly on the heat capacity ('thermal mass'')
of the materials exposed to direct sunlight, (along with other properties).

It is clear from the figure that solar absorption on surfaces of materials
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with large thermal mass (such as concrete, water, brick, etc.) results

in lower daily room temperature fluctuations; this result is also
predicted by other theoretical worksa and has been observed in

the field. One of the rules of thumb of passive solar design is

to locate thermal mass so that it is exposed to direct sunlight; this
rule is reflected in the Davis, California energy conservation building
code.4 However, this rule is only qualitative; there are no demonstrated
relationships between amount of thermal mass used or degree of direct
exposure to sunlight and the building response. Use of a simple
building model may be helpful in the quantification of such rules.

Although much effort has gone into studying thermal response
by numerical methods, simple analytic models for building performance
are not often used. Sonderegger (Ref. 9) discusses building models
using equivalent thermal parameters; although the model itself is
simple and transparent, the analysis and the evaluation of the
parameters is done numerically. Niles (Ref. 10) -also looks at simple
models to describe a specific passive solar house. But virtually all
the rest of the modelling effort has gone into numerical simulations
of building response,23 usually response to historic weather.

In contrast, our model treats the response of buildings to
idealized weather, such as typical sunny or cloudy days, or weather
cycles of cloudy days following sunny days. This approach is useful
in developing an understanding of the important parameters affecting
the building response, and those which are not as significant. Since
the form of our model parallels the computer models, improvements in

the apportionment of solar energy among the various interior surfaces
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can be studied using the simple model to determine which effects are
significant enough to include in a revised computer model. For example,
if it turns out that changing the solar radiation balance each hour
as the sun moves across the sky does mot strongly affect thermal response,
then this feature need not appear in the computer models.

A simple model can also be used to decide what criteria to use
in optimizing the thermal response of a building. As we will show, a
building designed to minimize fluctuations in room temperature without
heat input will be quite different from one designed to minimize annual
energy use under fixed-thermostat conditions. When the varieous indices
of thermal "quality' in a building disagree, a greater degree of
understanding is needed to choose among alternate designs; a simple
model can provide more insight into the physical process being modeled.

We now proceed to the derivation of the model. We will first
present in Sec. 2.2 the basic equations of motion for the heat transfers
within the building. These equations are developed along parallel
paths for a "lumped-parameter" model and a "distributed-parameter"
model. Next we will discuss the motivation for using each form of
equation, and what the consequences and implications of the equations
are. Finally, we solve the equations for the lumped parameter model
in Sec. 2.3, and then for the distributed parameter or continuum model
in Sec. 2.4. Comparisons between the lumped parameter and distributed
parameter models are discussed in Sec. 2.5. The solution is sketched

out in the text and redone with more technical detail in the appendices.
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2.2 The Passive Solar Building Model: The Rasic Equations

and Their Interpretation

In this section we first describe very briefly the passive solar
building to be modeled. We next present the basic equations of heat
transfer for a passive solar building, without detailed explanation.
Following this presentation, we will discuss some of the assumptions
and consequences of these equations. Solution of the equations will
be discussed in Sections 2.3 and 2.4.

We will consider in this paper passive solar buildings which
are designed to make use of the solar energy input through their windowsA.Z1
The word '"passive" is used to indicate that there are no active collector
units or heat storage distinct from the structure of the building.
(e.g., hot water storage tanks, rock beds, collector panels, etc.)

We will study managed buildings (e.g. those with movable insulation
panels) and will consider the buildings' response to backup heaters
as well as sunlight.

The model has enough generality to describe a number of different
designs of passive solar building, including direct gain systems, and
Trombe wall4b or waterwall systems. The equations can be most easily
understood if the reader imagines a direct gain system, that is, an
ordinary building with large window area. The building is modeled as
a small number of heavy elements, such as concrete floor or brick or
solid wood walls, plus some light elements, such as windows, surrounding
the room air.

Heat transfers within the heavy elements are treated either by

a lumped-parameter approach or by a distributed-parameter model. The
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lumped parameter approach is an approximation which is useful in describ-
ing the response of managed buildings, and in modelling irregular weather
patterns. The distributed-parameter solution is more exact, and gives a
more elegant solution, but is incapable of modelling managed buildings.
Heat transfers through light elements, such as windows, insulation-filled
wall cavities, and air leakage ("infiltration') are handled by steady-
state methods which only consider inside and outside air temperatures.

We consider the large solar gains through south-facing windows.
(Windows facing other directions can also be treated in the model) .
Sunlight enters the house through the window, and is absorbed, either
directly or after one or more reflections, on the surfaces of heavy
elements in the room (such as floors, partition walls, and envelope
walls). This process is sketched in Fig. 3. This absorbed solar heat

warms the room air in the manner described below.

2.2.1 Heat Balance Equations

The most central equations in this model are surface heat balances.
After sunlight enters a window, it is absorbed on some inside surface
(labelled 'j') which heats up to satisfy the following heat balance
equation:

hj (Tsj - TR) - OCjS + Qinj =0 (1)
where ﬁj is the combined radiation/convection surface film

coefficient times the area of the surface (for the jt

surface) (Btu/hr-°F or Ww/°C);

Ts. is the surface temperature (°F or °C) of the jth surface;

]

TR is the room temperature (room air‘temperature) (°F or °C);
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S is the solar power entering the room ((Btu/hr) or W);
o. 1is the fraction of sunlight absorbed on the jth surface;
Qin is the heat transfer into the interior of the material

h surface.

from the jt
The first term represents the flow of heat from the jth surface to the
room air, given by a combined radiation/convection film coefficient
(times area) multiplied by the temperature difference between the surface
and the room air. The term -ujS is the heat transferred to the
surface because of absorption of sunlight; the minus sign because solar
heating is a heat gain while the other terms are losses. The final
term is the heat transfer from the surface into the bulk of the material.
The form of this term is different in the lumped parameter model and
the distributed parameter model.

There are actually N different equations of the form (1);
one for each surface of a heavy material. Note that in these equations
we use the nomenclature ﬁ or h to denote a heat transfer coefficient or
conductance times an area, while U or h would represent the usual
heat transfer coefficients.

For simplicity, we usually describe the building using only 2or3
surfaces; typically we consider the floor, envelope walls, and possibly
partition walls. 1In addition to the surface heat balance, we require a
heat balance for the room air. We assume that the air has negligible heat
capacity compared to the walls & floor, and divide heat transfers into two
classes, quick and delayed. Quick heat transfers occur through pure conduc-

tive materials, with negligible heat capacity, such as windows, or through

infiltration of outside air. Delayed heat transfers occur through
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materials with nontrivial heat capacity, and involve heat transfers from
the Toom to the material surface, and then from the surface through the
material. These materials attenuate variations in outside air temperature
and delay their influence on the room air. Delayed heat transfers will
be discussed shortly; at present they are considered indirectly in the

terms hj (TS - TR) describing heat transfers from the room air to the

material sur%aces, since the magnitude of Ts. is determined by the
internal heat flows. ’

The room heat balance is given by:

N

j{_:l ﬁj (TR—TSj) " Gq(TR-TA) = H+op S 2)
where ﬁq = heat transfer coefficient (Btu/(hr-°F) or W/°C)

for quick heat transfers; the sum of the products of

U-values times areas plus infiltration heat losses

TA = ambient temperature

H = heater output (Btu/hr or W)

ap = fraction of sunlight absorbed directly into the

room air or on light materials

This equation states that the heat losses from the room always
equal the heat gains. The first term is the sum of heat losses from
the room air to each of the heavy material surfaces which surround it.
Note that the surface temperature TS will be influenced by both outside

j
air ("ambient'") temperature and sunlight. The second term combines into
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a single term the heat losses to surfaces of light materials (including
the characteristics of the entire conduction path to the outside), the
heat losses through windows, and those due to infiltration of outside
air. No other terms are needed, since the room air can lose heat only
to solid surfaces or through infiltration. The terms on the right are
heat gains; they are the heater output H, (which also includes the heat
generated by lights and appliances), and aRS, the fraction of solar
gain which is absorbed directly into the room air or on light surfaces
such as carpets. Op is typically near zero, because most of the sunlight
is absorbed on the surface of heavy materials.

To complete the description of the house, we must model the heat
flows through heavy materials (those whose heat capacity can't be
ignored). These heat flows can be described by either lumped parameter

or distributed parameter models.

2.2.2 Distributed Parameter Description

In the distributed parameter case, we assume that the jth

material (wall or floor) is a slab of homogeneous isotropic material
described by a conductivity Kj’ a heat capacity (pCp)j per unit volume
and a temperature distribution Tj(x,t). For one-dimensional heat flow,
the temperature is given by the solution to the diffusion equation

oT. (x,t)

ot - Kj

82Tj(x,t)

(eC ) . —_— (3
pJ sz

The heat flow from the surface into the material is given by

AT. (x,t)
Q. = -A.K, —Io——

in. i ox 4)

x=0 -
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where Aj is the area of the jth surface (ftz or mz). The fundamental
solution to the diffusion equation (3) with frequency w can be written

as (the real part of)

k.x -k.x .
e (+) i (-) j iwt
Tj(x,t) = \Tj e + Tj e ) e
or
<T.(C) cosh k.x + T.(S) sinh k.x) eiuJt
J ] ] ]
(5)
iw(pC. ). w(pC_).
- Py _ P ] .
where kj Kj 2Kj (1+1)

The boundary conditions which determine the amplitudes T.(+) and Tj(_)
are the surface heat balance (1) and a condition oh the outside
surface; usually the condition is that the outside is coupled by a
pure resistance to the ambient temperature or "sol-air" temperature.

The result can be visualized by looking at its limiting form for
a very thick material. Only the negative sign in the exponential appears,
and the solution ié in the form of a traveling wave, exponentially damped
in space.

The solution (5) assumes a single-layer wall or floor. Extension

to two or more layers is straightforward, and is discussed in Appendix 2.4.

2.2.3 Lumped Parameter Description

For the lumped parameter case, we approximate the wall or floor as

a sandwich of a lumped heat capacity Cj (Btu/°F or Joules/°C) surrounded
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by a lumped conductance U; (Btu/°F-hr or W/°C) on the inside and another
J

lumped conductance U0 on the outside, as shown in Fig. 4. The values

of ﬁi , U and Cj depend in a complicated way on the conductivity,

i
heat capacity, and thickness of the material, as discussed in Sec. 2.5.
The lumped heat capacity is characterized by a single temperature Tj'
All heat transfers in the material are approximated by conductive
heat transfers between the lumped heat capacity Cj and the inside
and outside surfaces. The outside surface is taken to be at the
ambient air temperature of TA‘ (If the outside film coefficient is
nonzero, its effects are incorporated into ﬁo. , as discussed in
Sec. 2.5). The inside surface is at a tempeiature Ts. , which is
determined from Eq. (1). ?

Thus, the heat flow from the inside surface into the material,

Qinf,ls given by

J
Qn. = Ui, (T - Tj) g (6)
] ]
The diffusion equation is replaced by a simple differential
equation
BTj R
Ci 5t~ QU * U Ty - T = 0 (7
J J
Equation (7) is simply a statement of conservation of energy:
oT .
the amount of heat stored per unit time by the material <Cj 7ﬁ%> plus

the amount of heat lost to the surface (_Qinf) plus the heat lost to
~ ]
the environment (UO (Tj - TA)) must equal zero.
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2.2.4 Solution of the Equations

The solutions for room temperature as a function of time are
generally the most interesting. We briefly describe their form below.
Solutions can be computed using Tables 1 and 2. These solutions are
derived for typical daily weather conditions where the solar gain, S(t),

is given by (the real part of)

S, e day (0 <t < td)

S(t) =
0 night (t; < t < 24 hrs)

S(t) is sketched in Fig. 5.17 The ambient temperature TA(t) is equal to
(the real part of) ATA eint +‘¥A’ where W, = 2n/1 day. The heater output
is taken as Ho’ a constant. (However, this constant can change values
from day to night.) All temperatures are measured with respect to
average ambient temperature, so we set Ek = 0.

We use the lumped model primarily for buildings whose parameters
change from day to night (e.g. because the collector windows are insulated
at night). The model generates two solutions, one for the day period
and one for the night period.

Solving the lumped parameter equations for N heavy materials
(j = 1,N) requires solving several sets of N simultaneous equations in

N unknowns, so the solution becomes very difficult to compute by hand

for N=3. For N=2, the result for room temperature can be written as

'Aldt . -Mogt iw t iw,t

0
A . e ATA e +XS S1 e + THd [day]

e + X
1d 2d Ay

T (t) =
R
-t -Aynt iwgt )
A e + A, e + XAnATA e + THn [ night] (8)

where the subscripts d and n indicate day or night values. The X's
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give the response of the building to solar and ambient temperature
inputs. The first two terms of the solution are transients generated
by the change of building parameters from day to night. The A's are the
characteristic decay constants of the house; the A's are coefficients
whose values are determined by matching the daytime and nighttime
solutions as described in Sec. 2.3. The values of all the coefficients
in Eq. (8) can be determined from Table 1.

Table 1 for the lumped parameter model is arranged in the form
of a program to calculate the numerical values of Eq. (8). If one

begins with the lumped parameters for the wall: Uwi’ Uwo’ hw and CW;

N

and those for the floor: Ufo’ Gfi’ ﬁf and Cf; along with the quick
heat loss coefficient ﬁq’ the radiation fractions O ps O and Op >
and the weather variables ATA, Sl’ td and w;, one can evaluate each of
the expressions in the table, in order, using only these parameters
or the results of earlier steps. The final step is the numerical result
for Eq. (8).

The distributed parameter model can easily model the response of
the building to longer-range weather cycles. For weather occurring

at a frequency W, > it yields a solution of the form
iw t 3 iw nt
Tp(t) = T +T, e L) T,® ° (9]
n=1
This solution is a Fourier expansion of the response to the driving forces
of all frequencies of importance; it is derived in Sec. 2.4.
Table 2 repeats this equation in a more detailed form and shows

how to derive the coefficients in the room-temperature equation. Numerical

evaluation of Eq. (9) would begin at the bottom of Table 2 and proceed to
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the top of the table.
Descriptions of the solutions are provided in Sections 2.3 and
2.4. Modifications needed to describe Trombe wall or water-wall collectors

are discussed in Appendices 2.3 and 2.4.

2.2.5 Interpretation of the Equations

This set of equations (1-7) idealizes a building as a room with
zero heat capacity, surrounded by a small number of materials of finite
heat capacity, and a pathway for instantaneous conductive heat losses.
Sunlight enters the room through windows, and is absorbed or reflected
from the various surfaces in the room. The reflectances, absorptances,
and room geometry produce a radiation balance; this balance is described

by the o parameters.



A fundamental difference between this model and most others is that
the sunlight is absorbed in varying proportions on interior surfaces,
rather than with uniform flux. Sunlight entering a south-facing window
will first strike either the floor or a wall (or else a piece of
furniture) ; that fraction of the energy which is not absorbed on that
surface will reflect and strike a second surface. Eventually all the
radiation will be absorbed on some material surface. If the absorption
occurs on a heavy surface, then Eq. (1) applies. If the absorption is
on a light surface (e.g. upholstery) then Qin will quickly become zero,
and all the solar heat gain will be transferred to the air. This is
equivalent to assuming that the room air directly absorbs that fraction
of the sunlight which falls on light surfaces: and is modeled by the
term uRS in (2).

The values of the a's are not easy to determine by analytic
calculation, since their determination involves tracing light rays
through several diffuse reflections. The geometry is often complicated
by the existence of furniture. Evaluating them from theory requires
complicated computer modeling, (see Ref. 28).

The most direct way to evaluate the a's may be empirical;
measuring incident light minus reflected light on a particular surface
allows the calculation of absorption. This measurement must include
not only the visible portion of the solar spectrum, but the near

infrared. However, thermal radiation (that is, radiation caused when
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a surface heats up due to absorption of sunlight) must be excluded
from the measurement. In practice, one can measure all radiation at
wavelengths shorter than 3y, since longer-wave sunlight will be
filtered out by the window glass.

As mentioned in the introduction, varying the fraction of the
sunlight absorbed on each surface makes a large difference in the
response of the building. Returning to Fig. 2 we see the difference
in the response of a passive solar building with wood frame walls and
concrete slab floors for four different sets of a's. All four lines on
the graph describe the same house. The solid line labeled A describes

= 6/7; o

the case where ufloor walls

= 1/7 and Op = 0. The lines
labeled B and C successively double o, at the expense of Ogs with
Op remaining zero. The dotted line labeled D sets Qg =0 = 0 and
ap = 1, corresponding to solar absorption in the room air.

As shown in the figure, the response of the building is
noticeably different as we vary the a's. Going from case A to case B,
the house is 1°F hotter during the afternoon but 1/2°F cooler at night.
Moving to case C where 57% of the sunlight is absorbed on the light,
wood-frame walls, the house overheats 2-1/2°F during the afternoon and
is another 1/2° colder at night.

Case D with solar absorption in the room, differs most dramatically
from any of the other cases; it overheats by almost 8°F compared to
case A while cooling off 2-1/2°F more at night. Thus correctly accounting
for solar absorption within the building makes a significant difference

in the predictions of performance. Getting the exact radiation balance

solved for a given house (i.e. evaluating the a's correctly) is
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significant, but even a reasonable guess at the a's will be a better
approximation than assuming some standard conditions. For a heavier
house (e.g. brick walls rather than wood frame) the difference between
case A and case D would be even larger.

The description of solar absorption as taking place on the
surface of heavy materials also helps isolate some of the parameters
which have important effects on the performance of passive solar
buildings. Equations (1) and (2) imply that if Qin.is large, then the
surface temperature will be low, and so the transféi of solar heat
from the surface to the room will be small. This is a desirable
feature; it tends to reduce overheating during the day. As will be
shown in Sec. 2.4 and Appendix 2.5A, an important parameter for a
surface will be the ratio of the conductivity into the surface
(Uj oT Kjkj) to the film coefficient hj; larger values of this ratio
imply better performance (less overheating).

The model assumes that all the heat capacity is contained in
the walls and floor. This assumption is really more of a definition;
everything with nontrivial heat capacity is treated as a surface
coupled to a bulk material (Eq. (1)); if furniture heat capacity is
important, it must be treated as a separate surface.

The form of Eq. (1) also assumes that the sunlight is absorbed
uniformly over each surface, in other words, that one unit area of a
given surface receives exactly the same solar gain as another. This
assumption is plausible due to the linearity of the Eqs. ((1), (3), (4),
(6), and (7)): twice the sunlight absorbed over half the area should

give roughly the same response, and is proven by the form of Eq. (14)
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in Sec. 2.4. This equation shows that as long as heat transfers are
linear in temperature difference, the distribution of sunlight received
over a surface doesn't affect the solution; the only important parameter
is the total amount of sunlight absorbed on the whole surface.

In fact, we assume that in general temperatures do not vary from
one point on a surface to another; in other words, that the floor surface
temperature TfS represents an average over the whole floor surface. This
assumption of l-dimensional heat flows is common to all calculational
methods; it is valid here as long as heat transfers are linear.

Linearity of the heat transfer equatibns is an assumption which is
common to all building models; heat flows are taken as proportional to
temperature differences. In fact, film coefficients are the sums of terms
which involve the differences of fourth powers of temperature for radiation
terms and roughly the 5/4 power of temperature difference for convective
terms. These heat transfers can be approximated as linear because
temperature differences are typically much smaller than absolute tempera-
tures, so a Taylor expansion which drops all terms of higher order than 1
in AT will not introduce serious error. For example for a room temperature
of 300°K and a temperature difference of 10°K, the error in a linear

approximation for radiative heat transfer is 5%.
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It is interesting to compare the assumption of heat capacity

capacity, (that is, to compare our assumption of heat capacity coupled

to the room through finite conductances ﬁj rather than perfect thermal
contact between the room and the heat capacity). Figure 6 displays
temperature versus time for the wood-frame, concrete floor house of Fig. 2
as calculated by our model for two choices of a's (solid lines) and as
calculated assuming a finite room heat capacity (dashed line)6. As

can be seen, there is nontrivial difference in the shape of the two types
of curves.

Another simplifying assumption in the model is that of one-layer
walls, In fact walls are composed of a sandwich of several materials:
gypsum board, wood or insulation, building paper, perhaps sheathing,
and siding. However, most of these materials either have negligible
resistance and capacitance (e.g. building paper), or are not
substantially different in properties from each other. For example,

a section of wall composed of gypsum board 1/2" thick and wood 3-1/2"



-39-

thick, plus stucco siding, can be approximated as a 4" thick slice of

. 8
wood for most purposes, since wood has

R

pCp = 9 Btu/°F -ft3 , and K 0.068 Btu/hr-°F-ft ,

while gypsum board has

0

pCp = 13 Btu/ftg—qF , and K 0.075 Btu/hr-°F-ft ,

not significantly different. This one-layer approximation yields a
substantial reduction in algebraic manipulation needed to solve the
equations. The response functions of Sections 2.4 and 2.5 can provide

a check on the validity of this approximation. However, a two-layer
model is used when there is substantial difference in material properties
(e.g. wood slats over a concrete floor).

Similarly, materials of similar parameters are combined to form
a single "surface'" j; this also reduces the amount of computation
needed. For example, wood-frame walls can be treated together with
the ceiling as a single surface. Combined or average parameters are
used for this approximation.

Room heat capacity is taken as zero in Eq. (2), whiéh says that
heat losses from the room equal heat gains, with no heat storage term.
This is a good approximation; even a light house has a heat capacity
of about 2.25 Btu/°F per square foot of floor area, while with 8-foot-high
ceilings, the heat capacity of the air is only 0.14 Btu/°F per ft.2
A more realistic passive solar house7 has 12 Btu/°F of heat capacity
per ft2 of floor. To confirm that this assumption is unimportant, we

calculated the 3 time constants for the lumped parameter model with
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finite air heat capacity; for the one case we checked A1 and Az agreed
within 5% of their values for Cair = 0, while A3 was so much larger
than A1 and A2 that terms involving it would decay rapidly to zero.

A 5% error in the two decay constants Al and A2 will produce an error
of much less than 5% in room temperature.

Another assumption is buried in the use of film heat transfer
coefficients. Film coefficients assume a conduction-like heat transfer
between material surfaces and air. In fact, the heat transfers are
the sum of two terms: a radiation term approx. 1 Btu/ft2 - deg. F-hr
and a convection term approx. 1/2 Btu/ftz—deg. F-hr. Actually only the
convection term describes heat transfers from material surface to room
air. The radiation term describes transfers directly between materials
surfaces, between surfaces and clutter (light furniture, books, rugs,
wall hangings, cabinets), etc. These other surfaces then transfer heat
to the air by convection. It would be impossible to describe radiation
exactly for a general case of an inhabited house, because of variations
in geometry. However, one could attempt to separate each of the terms

ﬁj(TS - TR) into two terms; heat transfer from surface, to (eventually)

J oo
room air h; (TS - TR) and heat transfer from surface j to all other
j
N R
surfaces 2: hji(TS- - Tg ) where the hjivs include geometric form factors.
i=1 1
i#j

This approach is outlined in Appendix 2.4; it involves the inver-

sion of an N XN matrix. This was attempted for one case; it greatly

complicated the algebra without changing the results substantially.
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In addition to these assumptions are the usual ones assumed in
all building models -- no intra-zone temperature variations, one-
dimensional heat flows, known materials properties, construction which
follows designs (e.g. no forgotten insulation or air leaks), known
behavior of thermostat, etc. In fact, the '"standard' assumptions
probably lead to about 10-20% uncertainty in any model, no matter how
exact the mathematical modelling.19 This "acceptability range' of
*+ 10%-20% justifies a number of the simplifications described above;
if the description of the house is only correct within 10-20%, then
5% calculational errors are not crucial.

In addition to the simplifying assumptions about the building,
an analytic model requires a different type of weather input than a
numerical model. Weather data is available as a function of time only
with 1-hour or 3-hour sampling periods. Numerical models use special
forms of response functions to account for this.9 An analytic model
must be driven by continuous functions of time. Connecting data points
with a smooth curve could lead to very long Fourier series for the
weather and correspondingly messy solutions to the differential equations.
In this model we approximate outside weather by simple, continuous
functions of time, typically sinusoids. Weather conditions are
usually treated by Fourier-analyzing the actual weather and only
taking a few dominant frequencies in the series, typically W, = 2m/day,
Zwo, Smo, and 0.

This procedure is in line with the intended uses of the model
as a design optimization tool and as a method for gaining an

understanding of how the building works. For either of these two
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objectives, it is more interesting to see how the building reacts to
idealized weather, (such as a succession of cold, sunny cycles, or a
cycle of sunny days followed by cloudy days) than to the more
unpredictable fluctuations of historic weather.lO

In summary, to allow analytic calculations of heat transfer, we
have idealized a building consisting of a number of multi-layer walls,
windows, etc., as a system of a few (e.g. 2) mono-layer walls and a
quick heat transfer channel. We have assumed that sunlight is absorbed

uniformly across the inside surface of each of these walls. All

excitations are taken as simple functions of time.
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2.3 Solution of the Lumped Model

This section discusses the solution of the lumped parameter model,
using Eqs. (1), (2), (6), (7), and a simplified description of weather
which is described below. In order to carry out this solution numerically
one must first evaluate the lumped parameters. Evaluation is not trivial;
CW is not just the heat capacity of the bulk material which makes up
the wall, neither is ﬁwi or ﬁwo equal to the U value times area. This
problem is discussed in Sec. 2.5. The discussion in this section
describes the solution of the lumped parameter model in general terms.
The detailed algebraic manipulations are contained in Appendix 2.3.

We first solve the equations for the free-floating (unheated) house.

We consider two surfaces with heavy materials behind them; call
them "floor" and '"walls'. The floor and wall temperatures (Tf and TW)
are the important variables in the calculation; they express the
temperatures of massive elements. Thus we will derive differential
equations which involve only T and Tf. The solution to these
differential equations will then be used to derive room temperature
TR. The room temperature is usually the desired result of the
calculation. It is given by Eq. (11) below.

We next describe the derivation, which is carried out in
Appendix 2.3.

We use Eqs. (1) and (2) to derive a relationship between the
room temperature and the dynamic temperatures Tw and Te. This
relationship shows that room temperature is a linear function of
the dynamic temperatures and the driving forces S, H, and TA; it is

given by
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Nw Nf 1 Ns 1
T, = +— T +=—=T.+ =T, + =228 + H (10)
R ~

NR w NR f NR A NR QlNR

where the N's are defined in Table 1.

We use this relationship, along with the surface heat balance
equations (1) to rearrange the differential equations (7) until they contain
only the dynamic temperatures Tw and Tf and the driving forces. The

result can be written as

Tw + AP Tw - AF Tf alH + aZS + a3TA
(10a)

Tf + AG T. - AT = a

£ q Tw 4H + aSS + a T

6°A

Again, the A's and a's are defined in Table 1.

These are two coupled linear first-order differential equations
for the dynamic temperatures. Their solutions, along with (10), will
give us the room temperature. The solution to these equations can
be written as the sum of a homogeneous solution and an inhomogeneous
solution.

The homogeneous solution is

where the B's are arbitary and the A's and K's depend on the building

parameters and are given in Table 1.
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The inhomogeneous solution depends on the form of the driving
functions. We approximate the driving forces by simple functions and
then derive the inhomogeneous solution for each one.

The heater output is taken as a constant HO, which may be
different during the day and night ('Hod' and 'HO '}. Then the

n
inhomogeneous solution to the differential Eqs. (10a) is

These constant temperatures are given by Table 1.
The solar gain function S(t) is given by a sine wave during
the day or zero at night.17 We take t =0 to be when the sunlight first

enters the windows and t = td to be when it last enters. Then

< t < 24 hrs.

We assume that S(t) is the same each day. Then the inhomogeneous

solutions to (10a) is
T =y S, e 0<t<ty

Te=X. S, e 0St<ty
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iw t

We take TA(t) = AT, ¢ ° where Wy = 2n/1 day. This sets

A
average ambient temperature equal to zero; that is, we measure all
temperatures with respect to average ambient.

Then the inhomogeneous solution to (10a) is
iwot
T = AT, e

X
w A, A

iwot
Tf = XAf ATA e
The complete solution to (10a) is the sum of the homogeneous
solution and the three inhomogeneous solutions. This solution still
has two arbitrary constants B1 and B2. We eliminate them by finding
appropriate boundary conditions.
To do so, we note that there are different solutions to (10a)
for the day and for the night. This is because the terms proportional
to S only appear during the day, and also because the house parameters
may change from day to night (e.g. if the windows are shuttered at night).
Although the form of solution may change from day to night, the
actual values of Tw and Tf cannot change discontinuously, since this
would require infinite heat flows. So the boundary conditions on the
temperatures are that Tw(t) and Tf(t) are continuous functions of time.
The formulation of these boundary conditions will depend on the

details of the problem. For the problem of constant weather conditions,

where each day is precisely like the previous day, the boundary conditions

e Te(0%) = Tg(07)
and . :

T, (00 = T (07)

, . )

Tw(td ) = Tw(td )
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These four boundary conditions fix the four constants Bld’ B2d’
B1n and B2n' Knowing the B's, we now have the complete solution to
(10a) for both day and night periods. We can finally use this solution

with (10) to find room temperature.

The complete solution can be expressed as

—Aldt —Azdt iwot iwgt
Big® + B2d e * Xa AT, e * Xg S1 e + Ty [day]
wd w wd
Tw(t) = (11a)
-A (t-ty) -A (t-t)) iw t
n d Zn d o} .
B1n e * B, © * Xp ATA e + TH [night]
wn wn
At -A .t iw t iwgt
1d 2d 0 1
By gKqq © + ByyKyy e * Xpp AT, € tXg Sp Ty [day]
d f fd
Te(t) = (11b)
AL (t-t,) -A, (-t ) iw t
n d 2n d 0 .
ht
By Ky © + B, K e + XAf AT, e + Ty [night]
n fn
N N iwt N iw, t
w f 1 0 S 1 1
To(t) = T (t) + = To(t) + g— AT, e + =S e + — H (11c)
R Np “w Np °f NR A Np 1 i N
qg R
The S1 term in the room temperature equation (1lc) is omitted at night.

Table 1 below gives a program for calculating the functions
described by (11) from building and weather parameters. In most cases,
the interesting result of the calculation is the room temperature curve.
Given design day weather conditions, the room temperature function
describes whether the building will overheat during the day or cool off

too much during the evening.
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Wall and floor temperatures derived in (11) camnot be used
directly, since they are not physically measurable temperatures.
However, along with room temperature, they can be used to derive surface
temperatures. The surface temperatures may be of interest either for
experimental validation of the model or for calculating mean radiant
temperatures.

The lumped parameter model is most useful for evaluating the
response of managed passive solar buildings, since the calculational
effort to solve the model does not increase noticeably if daytime and
nighttime parameters differ. It can be most simply used to calculate
the response of the building to steady diurnal weather variations which
don't change from day to day, as detailed above. However, one can also
predict the response of the building to a cold or less sunny day
following the design day calculated above or to a succession of days
with differing weather conditions, as described in Sec. 3.3.6.

Trombe walls or waterwalls can also be modelled using lumped
paramaters, with a slight change in some of the definitions of Table 1.
The heat transfefs for the Trombe wall are illustrated in Fig. 7; they
involve the heat loss through the collector glazing, the heat transfer
from the air channel to the room, and the heat transfer from the front
surface of the Trombe wall to the chamnnel air.

Table la lists the revised definitions needed to model the

Trombe wall. Derivation of this model is left to Appendix 2.3.
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2.4 Solution of the Distributed Parameter Model

This section discusses the solution of the continuum model at a
similar level of overview to the previous section. Algebraic details
are in Appendix 2.4A. The continuum model solves the heat transfer
equations in Fourier-transform space. It can only be used when house
parameters are time independent; time-dependent parameters generate
extra terms which, although they can be calculated analytically (see
Appendix 2.5B) are tedious to compute.

The continuum model is most useful in cases where the response
of the building to several-day weather cycles is important. As we will
show, the response to weather cycles can be derived relatively easily
from the solution to daily cycles.

This model also handles more than two material surfaces without
undue complication of the algebra. We will therefore display the
equations of heat transfer for a slightly more complicated system than
used in the lumped parameter model. We will use three material surfaces
in this derivation, with subscript 'e" for envelope walls, '"p'" for
partition walls, and "f" for floor. Extension to a larger number of
surfaces is straightforward.

The continuum model is solved in Fourier transform space; instead
of looking at, say, the room temperature TR(t), we look at its Fourier

wt. %R(w) is a function of the

(=]
transform T, (w) = L«ZW)j. dt T (t) e '
R | o R
driving forces of solar gain é(m), ambient temperature %A(m) and heater
output H(w). If these driving forces can be expreséed as sums over
only a few frequencies, then we can write TR(t) as a Fourier sum over

a small number of frequencies. These relationships are summarized in

Table 2. We derive them below:
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Heat transfers in each heavy material j are described by the
diffusion equation (3). This solution can be expressed as a temperature
distribution

T.(w,x) = Aj cosh kjdj(l-g) + Bj sinh kjdj(l—g)

]
[iw(pc).
where k., = P
] K.
J
= x/d.
g /J
d. = the thickness of the jth material.

A. and Bj can be evaluated using boundary conditions for
the two surfaces of the material.

The outside surface of an envelope wall is coupled to ambient temperature

by a pure resistance, so the outside boundary condition is conservation

of heat flux at the boundary between the heavy material and the resis-

tance, as in Eq. AZ2.4-(9-11). The inside boundary condition is the

surface heat balance (1).

We can evaluate this expression for surface temperature

%j(w,x=0) = Tg,; the result is

J

Tsj = (ujS + thR) le + TARZj (13)
where uj = uj per unit area and le and sz are linear response

functions of w which describe the response of the indoor surface

of material 'j' to thermal inputs. le describes the response to heat

flows directed toward the inside surface, while R2j gives the response
to varying temperatures on the outside surface. The response functions

are monotonically decreasing functions of w. For one- or two-layer

materials, they have relatively simple forms, and are given for
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several types of materials (e.g. envelope walls, partition walls, and
semi-infinite floor slab) in Table 2 and Eq. (A2.4-21). Some typical R1
functions are plotted in Figs. 8, 9, A2.5-2 and AZ.5-3. R1 has dimensions
of thermal resistance, °F—ft2-hr/Btu or °C—m2/W, while R2 is dimensionless.
With slight redefinitions, these response functions are the Fourier form
of the response factors used in computer models.

The response functions will also be important in choosing values
for the lumped parameters; they are plotted and tabulated for several
representative materials in Sec. 2.5 and Appendix 2.5A.

The expressions for surface temperature (Eq. (13)) can be used

in the room heat balance to produce the equation

TR(w) Uq + he(l—heRle) + hp(l—hpRlp) + hf(l—thlf)v

= S(w) (aR + heoceR1e + hpochlp + hfalef)

+ T, (W) (Gq + ﬁeRze) + H(w) (14)

This equation relates the Fourier transform of the room temperature to
those of the driving forces S, TA and H. It can be written simply in the
form

TR(w)-A(w] = S(w)*B(w) + TA(w)-C(w) + H{w) (14a)

where A, B, and C are frequency dependent functions given by (14). All
of the building response functions A, B, and C are linear combinations
of heat transfer coefficients times materials response functions. All the
frequency dependence is contained in the materials response functions R1
R,; materials properties such as conductivity do not appear except in
these functions.

The response of the building is driven by the Fourier transforms

of ambient temperature TA(t) and solar gain S(t). Fourier transformation
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produces very short series, since TA can be modelled acceptably by

1 to 3 terms. If we take the same function for S as in the lumped-

parameter model: .
|s,|sin wt 0<t<t,

0 td< 0< 24 hrs.

where w, = W/td; then S can be written as

o inwot
S = |51|Ig;)dn e where w_ = 2mw/day

where the real part of the complex quantity is implied, and

Yo
— e e e e e e e e e e e e e e e e n=20
W,

d =

n 'y
Wy Zwl ( -inw ty > n 0
[ — e + 1 . . . . .
2m

2 2
wl—(nwo)

For large n, d =0 as 1/n2: for ty~7-9 hrs;']d4! < 0.08
and |d515 0.02. Thus for 10% accuracy, we can ignore harmonics of

S higher than 3 W, -

The solution of the model for constant weather is then

< B(nwo) inwot B (0) C(wo) iwot _ -
Tp = 1541 . AGw) d, e sl ay do Alog) AT, e HRTNRANG))
n:
' - (15)

This gives the response of room temperature to daily weather fluctuations.
A similar form of equation applies for a Trombe wall building, with A,
B, and C given by Eq. (A2.4-39).

The form of Eq. (15) tells us something about the desired
frequency dependence of A, B, and C for a floating-temperature passive
house. We want the house to sit at a considerably warmer room
temperature than T

A’ but we don't want its temperature to fluctuate

rapidly over the course of a day. Therefore we want to choose materials
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B(w. ) Clw,)
B{0) . 0 0
such that INO) is large but Zﬂ;i;f and KTGST are small.

We can also see what design criteria apply to a constant-
thermostat house which is continuously heated for constant room temperature

TR(uﬂ =0 for w#0. In that case, we can write (14a) as

Hm)=TRm)Am)—S@DBMQ—TA@)C@)

We note that H(w) integrates to zero unless w = 0, so that to minimize
heating requirements, we want B(0) large and C(0) small. (Of course,
if H(t) goes negative in this solution, it means that air conditioning
is required and our model is then unrealistic). We show in Appendix 2.4
that C(0) is just the steady-state heat transfer coefficient of the
house; so the strategy of minimizing C(0) is satisfied by simply
insulating the building.

Thus we see that the design strategy for optimizing thermal
performance of a house depends on whether the house is free-floating
or thermostated. Design strategies for the thermostated house will
not differ radically from those implied by the degree-day method,
while those for the free-floating house will be more complex.

We can also use Egs. (14) and (14a) to see some of the physical
significance of the response functions. To get A(w), we add the quick
'Rl')' These

J 1]
terms act as heat transfer coefficients (or U-values times areas) for

heat transfer coefficient ﬁq to terms of the form ﬁj(l—h

their heavy materials. For w » 0, they reduce to the conventional steady-

state heat transfer coefficients, as shown in Appendix 2.4. For
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typical wall sections the U-value is much less than 1 Btu/°F—hr—ft2,
50 hj(l ~th1j) << 1 Btu/hr—ft2—°F for w—+0.

Typical Rl functions begin to decline slowly as w becomes finite.

]
very close to 1 for small values of w. Thus small decreases in

Since h; ~ 1 Btu/ft®-°F-hr and hj(1-hjRyj) << 1 Btu/ft®-°F-hr, hjRy; is

le will result in large relative increases in hj(l-thlj). This

allows A(w) to increase, so that oscillations in room temperature
TR will be damped, regardless of whether they are a response to
sunlight, temperature, or heater output.
Similarly, the form of C(w) involves adding Gq to terms like
ﬁj sz . Evidently these terms also act like heat transfer coefficients;
in the limit of w =0, ﬁjRZj = ﬁj(l—thlj) = Gj‘ The function sz is
nearly constant for small w and decreases monotonically with more
and more slope as w increases. Thus C(w) decreases monotonically

with w, resulting in less and less response to faster air temperature

oscillations.

2.4.1 Weather Response

The distributed parameter model can easily be used to study
the response of a building to several-day-long fluctuations in sunshine
or temperature. Adding slowly-varying ambient temperature to the model
is trivial; for TA varying at weather frequency W, we simply add
C(mw) iw t

A e w i
TAw A(ww) e to the solution for TR.
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To add slowly varying insolation, we assume that solar gain is
still sinusoidal every day, but that the amplitude of the solar gain

varies sinusoidally over a weather cycle. That is, we express S(t) as

(S + ASW cos wwt) sin Wy (t - tsr) » . daytime
S(t) =
0 e e e e e e e e e e e e e nighttime

where tsr is the time of the most recent sunrise.
We assume that mo/ww is an integer for simplicity. Thus solar intensity
is approximately S + ASW at noon on the sunniest day and S - ASW at noon

on the cloudiest day.

S(t) can be Fourier analyzed into relatively few frequencies
(in principle, all integer multiples of w —are possible). We show in

Appendix 2.4 that the only frequencies which appear are W, W

O,
W, + W, 2w0 + CHEPREE The amplitudes are found as follows:
The amplitude at frequency 0 is d, x§
W, dO X ASW
wo dl x S
AS
wo + ww d1 X 5
nw d xS
n
AS
nw_ *w d x —
w n 2
iwst

This can be understood as follows: a term ‘Slldn e ' from the Fourier

expansion of the daily solar gain function is replaced by the terms
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_ iwnt ASW i(wn-ww)t ASW i(wn+ww)t .
Sd_ e + ——d_ e + —d e These three terms
n 2 n 2 n
_ iwnt
add to (S + AS_ cos w t) d e
w W n

The solution can be written as the steady-state term and the

__B(nwo) inwot
w _term plus triplets of terms of the form S ——d_ e +
W A(nwo) n
i(nw +w - i -
AS  B(mwg + W ) : ‘81( o W)+ AS B (nw, - w,) ; el(nwo w )t
2 A(nwo-bww) n 2 A(nwo-ww) n

These are approximately equal to12 S + ASW cos wwt times the solar
gain term at frequency nw in the daily solution.
Thus, the only term added to the daily solution by the addition

of weather-varying solar gain is the weather frequency term itself:

d e " . The daily solution is exactly what we derived

previously in Eq. (15) except that lsllis replaced by §7+ASW cos w t.

The full solution is displayed below:

3 .
B(nw ) inw t
(§+ ASW cos wwt> {Z ° © } +

T (t) = ——d e
R =l A(nwo) n
CB(w ) iw t Clp. ) iw t
= B(O) W W = W W
+ S A00) do-FASW Kfa;j—doe + TA + ATAW K@J;j-e +
(16)
Clw) 1w t
+ AT ° + H _L
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We have derived in this section a simple expression for room
temperature response to ambient temperature and solar gain, which uses
truncated Fourier series. A model which considers approximately weekly
weather variations will express TR as a sum of 8 terms, which can be
computed by hand.

As mentioned earlier, this model will only work for unmanaged
passive buildings; that is, buildings which do not open windows or add
insulation in response to weather conditions or time of day. However,
for these unmanaged buildings, the solution derived is an exact solution
of the heat transfer equations (to arbitrary accuracy depending on how
many terms of the Fourier expansion are retained). In other words, all
the simplifications in the model occur in the writing of Egs. (1, 2,
(3), and (4)), not in their solution.

Also, it is often possible to produce an approximate solution to
a managed building by changing the value of H(t), the heater output
function. For example, suppose we assume that a window is insulated at
night. We estimate the expected reduction in heat loss due to this increase
in insulation, and assume that much energy is released to the room air
by the heater. An exact solution would require equivalent heater output
to equal AUA(TR-TA) where AU is the change in conductance of the windows.
The approximate solution (or iterative approach to the exact solution)
assumes that we already know (TR—TA) and adjusts H(t) to equal the guessed
value of AUA(TR—TA). This approximation moves the time-dependence from
the building parameters (which we can't handle) to the input functions.

The form of the equations in this section assume single-layer heavy

materials; however, the use of multi-layer materials will only produce
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messier expressions for the response functions. Some two-layer material
response functions are given in Appendix 2.4 and Appendix 2.5. As in
the lumped case, we do not model direct radiant heat exchange between
material surfaces. Including this effect greatly complicates the

computations, as shown in Appendix 2.4.



-59_

2.5 Evaluation of the Lumped Parameters

The section on the lumped parameter model (Sec. 2.3) shows how
to calculate the response of a building as a function of a few lumped
parameters. However, it did not describe how to calculate values for
these parameters if they were to be used to model a continuous wall.

In this section, we derive methods for choosing values of lumped
parameters which optimally simulate the response of continuum materials.
The purpose of this exercise is to provide a way of simulating a
managed building whose parameters change from day to night or as a
function of weather.

Lumped parameters are a mathematical construct used to simplify
solution of the equations. A continuum wall's temperature is described
by a function of position Tw(x,t); to describe it by a single
temperature TW is not physically meaningful. That is, the lumped
temperature Tw cannot be measured. However, Tw’ along with the lumped

~

parameters Uwi’ Uwo and Cw’ will determine a wall surface temperature

~

which can be measured. If Uwi’ Gwo’ and Cw can be chosen such that
this wall surface temperature agrees with that derived from the exact
solution, then the lumped model will be useful.

We derive optimal values for the lumped parameters by calculating
surface temperatures for an isolated material (floor or wall) in both
the lumped and continuum models.

The calculation proceeds along the same lines as that used to
derive the response functions of Sec. 2.4. The result is an expression
for response functions for the lumped model, along with the previously-

derived response functions.
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Thus we find that in the lumped model, the surface temperature

TS is given by:

T, = Rlz (hTR + 0 S) + Rzg TA (18)

U + U. + iwC
1

0
where R1 = — 5
2 (UO + Ui+ iwC) (h + Ui) - Ui
UO u.
R, = 1 - a
L (U, + Uy + iwC)(h + Uy - Uy
while for the continuum model
T, = R, (hTp + 3 8) + R, T, (19)
C C
h R = sinh kd R = Kk
wnere 1. Kk cosh kd + h sinh kd °~ "2_ Xk cosh kd + h sinh kd

The lumped parameters are then chosen to provide the best fit

between R1 and R1 and between R2 and R2 . This will also provide
c A c L

the best match between the surface temperatures predicted by the two
models. It is apparent from Eq. (14) that accurately simulating the
response functions or surface temperatures for each material will
provide a good simulation of the response of the entire building.

From the form of (18) and (19) we see that the lumped response
functions cannot agree with the continuum response functions for all w.

For example, R, approaches a finite constant for large w, while R1

c
decreases steadily as w increases. However, not all frequencies are of

1g
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interest in the passive solar heating problem. The driving functions
TA and S have spectra which are large for w = 0 or w = 2m/yr and for
frequencies around w, = 2n/day. However, their components at high
frequency (w > 3 wo) are generally not very large, so if we can choose

the lumped parameters such that R_l and Rl agree 0 Sw <3 w, we should

expect good agreement for the lumpid and continuum models.

We present two methods for simulating the lumped parameters,
one for thin walls and one for thick walls. The definitions of thin
and thick will become clear from the analysis; in practice walls
thinner than 5" of wood or 10" of concrete are ''thin".

For the thin wall model, we use an adaptation of a method
suggested by Sonderegger.13 We look at the poles and zeroes of the
response functions. Noting that the R2 functions have no zeroes,
and that their poles are the same as those of the R, functions, we
can look at R1 only. Functions of a complex variable can be expanded as

-2

- - 1
2 Z
1 (-55)

zeroes and poles and F is the value of the function for z = 0.

ny8

i

a ratio infinite products Fe. where the z's and p's are

If z << z; the term < —-fL>\uill be close to'1l. Thus if we look
i
at the function for z << z; and p; we can approximate the function

by truncating the product with i terms, since all terms of higher order

than i will equal 1.

The function Rl has only one pole and one zero, while R1
3 c

has an infinite string of alternating poles and zeroes. All poles

and zeroes of all four functions occur along the positive imaginary
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w axis. If the first pole and zero of R, occur at values of |w| much

1
c
larger than 3 Wy > then we can truncate the products for R1 at one
c
term and get a good approximation14 for Rl using R1 . Such a truncation
C Lo R
will give us three equations in the three unknowns Ui s Uo and C.

These equations are:

1) pole of Rl first pole of Rl

L c

first zero of R
1
2 c

2) zero of R1

and also 3) R1 (w=0)

R, (w=0)
% lc

Solving these three equations (see Appendix 2.5A) gives the

following results for Ui’ UO and Eﬂ which are also summarized in

Table 3.
2 2
U = E[__ _Ii+ H_._l h
1 2 d 2
Py Py
2
& <1 P ) . (20)
2. _
U = d 12
0 2
Py
d%0C (U +U.)
E‘ - P 0 1
m2x
i . . -p K
where py; 1s the first solution of tan Py = T
For the case where the continuum wall is in series with a resistance
R, we cannot simply add the lumped resistance &i or EL- to the
1
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resistance R to get the new value of f%— or T%_ ; instead the whole
i o

process of matching poles and zeroes of response functions must be
repeated. The results for inside insulation, outside insulation, and
partition walls are shown in Table 3. The derivation is shown in
Appendix 2.5A.

As mentioned earlier, the thin wall approximation only works

for w << py or Zy- Sonderegger shows that this will be true for all

< < [ 3K o = .
wSwooo when d 2 SEBE——~ (wmax 3 wo), (see Appendix 2.5A).

)

As an example, we present the comparison between the exact
(continuum) response functions and the lumped response functions for
2" concrete in Table 4. This table shows good agreement for both
response functions for w < 8 Wy - Table 5 for 4" wood also shows
good agreement for w <3 w, , except for some loss of phase lag in
the lumped functions. The magnitude of R; is graphed for this case
in Fig. 8.; the solid line represents |R1 | while the light dashed

Cc

line represents IRlzl.

But the agreement worsens for thick materials. Table 6 lists
the continuum and lumped response functions for 1% - foot concrete;

and Fig. 9 graphs |R, | and |R1 ‘. As shown, the agreement becomes poor

1C Q2

for w 2 w_.
O

For thick walls, a number of poles and zeroes of R1 occur

C

whose magnitude is less than Swo. Since R1 has only 1 pole and zero,

the locations of these points must be chosen to approximately simulate
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the behavior of the many poles and zeroes of R To do this we require

1
c

that in the semi-infinite wall 1imit (the limit of d » « and Uo -+ 0)

that R1 = R1 exactly for some arbitrary frequency w . We chose the
L c

frequency to be W, since the need for accurate simulation is highest
at this frequency. This condition can be expressed as one complex
equation in two unknowns Ui and C. We also require that Ui and C

are real, which ensures that the pole and zero of R1 will be on the
2

positive imaginary w axis. This yields results for Ui and C for

the semi-infinite wall:

U, =v2 K [k| (2.21a)
_ /fpcp
= (2.21b)
x|

Physically, these equations tell us that the effective heat capacity is

that contained in the skin depth of thickness ZZ» while the effective
x| -

inside U-value is just the conductivity K divided by half this skin
depth.

For finite thickness walls, we let UO be finite and adjust
its value to give the correct steady-state U-value (%;) when in series

with U.
1
4 1)
u_ = {—-AK - W) } (2.21¢)

This method gives functions R which agree well with R, for several

1 1
L c
sample materials.” Figure 8 shows the comparison between [Rl | and
c
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IRIQI for 6" wood; while Fig. 9 is for 1%' concrete. In both figures,
the continuum response functions are plotted with solid lines, while
the thick-wall lumped parameter functions are plotted with heavily
dashed lines. For comparison, the thin-wall functions are plotted with
lightly dashed lines. Figure 9 also shows the comparison in the limit
of a semi-infinite concrete slab. The comparisons between both R1 and
R2 are also listed in Tables 7, 8, and 9, respectively.

Another feature of the thick-wall method is that its values for

the lumped parameters join smoothly with those given by the thin wall

12

model. That is, when C, U for both wood

thin = Cthick ° %4 thin -~ Ui thick

and concrete. Figurel0 graphs the values of lumped parameters as a
function of wall thickness for concrete, and illustrates this smooth
transition. The numerical values for the lumped parameters are tabulated
in Table 10 for concrete and Table 11 for wood. Because of this transition,
we can provide a rule for distinguishing thin walls from thick: whenever

Cthin nodel > Cthick nodel ? we use the thick model. Physically, this is

because the effective heat capacity of a finite-thickness wall can never

exceed that of a semi-infinite wall.15

The thick-wall parameters of (21) are chosen to represent a single-
layer thick wall. Extension to two-layer walls is done in Appendix 2.5A;
the results are summarized in Table 3. Because of the use of the

penetration depth in the equations for the lumped parameters, the thick

wall approximation should be valid only for d > %Z;-. But the thin wall
A k|
model is valid for d <'\ﬁ% %ZT . Thus, the two models overlap
k

and either one or the other should be valid for all thicknesses
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of wall. We note, however, that the thick wall model is based on an
arbitrary choice of match frequency. Although it appears valid for
common building material parameters (such as those for wood or concrete),
we have not provided a general demonstration of validity.

The purpose of this section has been to present a methodology
for selecting lumped parameters to approximate the performance of a
continuum wall with a sandwich wall model. This methodology is
summarized in Table 3: for each combination of materials parameters
(X, pCp , etc.) one calculates C for both thick and thin models.
Whichever model generates the smaller estimate of C is used to evaluate

~ ~

Ui and Uy- For a sample of building materials, the lumped-parameter

Ry generally simulate the distributed-parameter R; to within 10%; the
maximum error observed was less than 30% at w = 2II/week for semi-
infinite concrete.

The lumped parameter solution for a whole building is compared
to an exact solution in Appendix 2.5B. This Appendix shows the
agreement, for one choice of house characteristics, between the lumped
parameter solution and the exact solution. The results are summarized
in Fig. 11, which compares the room temperature of a house with one
continuum wall, first as approximated by the optimal choice of lumped
parameters and then with an exact solution. As shown in the figure,

the lumped parameters (solid line) provide a good simulation of the

exact solution (dashed line).
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2.6 Summary and Conclusions

This section is intended to present a method for calculating the
response of a simple passive solar building to idealized weather. Such
a calculation can be used in finding optimum window areas, insulation
levels, amounts of heat capacity, etc., for a given climate.

We have described two approaches: a distributed parameter model,
which is useful in developing an intuitive understanding of the building,
and which works only for unmanaged buildings; and a lumped parameter
model, which provides a more approximate solution, but is capable of
handling time-dependent building parameters (e.g. night insulation).

The results of these approaches are summarized in Tables 1 and 2.

We have developed arguments to show that the approximations
made in deriving our results appear to be justified and have shown
that for one test case, the results of the lumped parameter approach
agree with the exact solution. We will show the agreement with
experiment in Sec. 3.

However, much work remains to be done before these models can
be used for practical design applications.

First, sample optimization calculations should be done for a
few typical climate areas to see which parameters change dramatically
with climate and which are relatively unaffected. Optimum free-floating
houses should be compared with optimum thermostated units; the habits
of the occupants will apparently change the optimal window areas.

Second, further approximations should be made to simplify the

arithmetic. The end-product should be a model which can be used by
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architects and non-technically-trained building designers. This
simplification might generate some simple rules of thumb for design
trade-offs.

Third, realistic models of weather should be developed. Computer
Fourier transform techniques may be usable to generate best estimates
for the weather-frequency W, s the expected fluctuations in sunlight,
and the correlation between cold weather and cloudy weather.

These problems will be discussed in future papers.

We conclude that analytic models can be used, with reasonable
accuracy, to model the dynamic thermal response of passive solar
buildings, given design weather conditions. These models can be solved
in less than an hour with pencil and paper and a slide rule or

electronic calculator.
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Footnotes to Section 2

3a.

4a .

4b.

Ref. 1 describes the heat balance (solar radiation in minus
conduction/convection out) on a south-facing window for several
typical U.S. climates.

Ref. 2 discusses heat balances for different types of glazing.

These houses are described in Refs. 5, 10 and 20, and are catalogued in

Ref. 6. Ref. 7 contains several-page write-ups of the architecture
and thermal performance of 5 passive buildings.

See Ref. 3a and the discussion in the beginning of Ref. 4.

Ref. 4.

Balcomb defines passive solar buildings as those in which energy
flows by natural means (Ref. 3c). Our definition of passive is

a little more restrictive: we exclude systems which use collectors
which are distinct from the building itself.

A Trombe wall is a south-facing heavy wall with one or more layers
of glazing covering the south or outside surface. The sunlight is
absorbed after passing through the glazing (see Fig. 7). The air
in the channel between the wall surface and the glazing may be
coupled convectively to the room air through slots in the bottom
of the wall. The inventor of the Trombe wall discusses some of
its attributes in Ref. 20.

See next page.

The method for deriving lumped parameters is specific to the
surface-absorption model, so it is not clear what values of heat

capacity to use for Croom' But the form of the two curves is
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5. The thermal properties of dry soil are not much different from
those of concrete (see Table F-1) so we can model the system of
floor + soil as a homogeneous material. The actual diffusion
problem for a concrete slab with soil underneath is three
dimensional. Heat floors along curved paths from the inside floor

surface to ground surface and then to the air.

To first approximation, we can model this system as a one-dimensional
heat flow problem through a thickness of about half the diameter of
the floor, particularly if the slab edge is insulated. The exact
thickness is unimportant, since most of the heat transfer occurs

in the first foot from the floor surface. The penetration depth

for a sinusoidal temperature variation in concrete is about 6"

for daily cycles and 8 feet for annual cycles.

Table F-1

Thermal Properties of Concrete and Soil

3 Btu > _ K £e?
p(1b/ft®)  Cp(Btu/lb) SELE, - 56 (£5)
Concrete (Ashrae) (Ref. 15) 144 .156 .54 .024
Concrete (LASL) {(measured) pCp=18. .8 .044
Concrete (Neville) (Ref. 16) 140 .20-.28 .98 02- .06

Dry Soil{Rose) (Ref. 17) ~60 ~.20 ~.5 ~.020-.045
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sufficiently different that even if we were to choose a different
value for Croom’ the agreement would still be poor. (Note that
the value of U that is used is not ambiguous. The model must
always give the same steady-state heat loss as the exact solution).
See Appendix 2.3 for description of house parameters.
Values are from Ashrae Handbook of Fundamentals, Ref. 15, for
gypsum board p = 50 1bs/ft3; K =0.075 Btu/°F-ft-hr. Heat capacity
Cp is not listed, so we use the value of 0.259 Btu/°F for gypsum.
The discrete form of the Laplace transform is called the z-transform;
it is described in some detail for building models in Ref. 29.
This is apparent from looking at the output of the TWOZONE program
(for a description of the program see Ref. 8). TWOZONE provides
as output a graph of room temperature, ambient temperature, furnace
output, and thermostat setting as a function of time. (see Fig. 1.3)
The graph covers the first four days of each month.

One can get an idea of the passive performance of the
TWOZONE house by setting the thermostat very low (e.g. 55 or
even 40 F) and looking at the fluctuations in room temperature.
But to do so, requires first trying to find typical circumstances
of outside weather - which hopefully occur during the first four
days of the month - and then looking at the response of the
building to custom-selected typical weather. It would be much
easier to simply program in the desired ''typical" weather.
Concrete and soil both have thermal properties which depend on

the detailed description of the individual specimen. Moisture
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content and density are properties which strongly affect the
thermal transmission of both soil and concrete, and which are
highly variable.

Typical values for the properties lead to thermal
parameters which are roughly the same, as shown in footnote 5;
thus for simplicity we model the floor and soil as a single
entity. This approximation will break down if there is moisture
transport through the soil under the house.

This is the case if %-varies slowly with w, as shown in

Appendix 2.4.

See Ref. 9, Chapter III.

A truncated infinite product expansion of a response function
does not minimize the mean-square error of the result; however,
it does maintain the correct location of poles and zeroes and it
also apparently preserves minima and maxima of the resulting
function in the time domain (see Ref. (19)). These last
properties are important in the case of a passive solar house.
One important criterion of a good model is that the hottest

and coldest temperatures be predicted correctly. A minimum-
least-square-error fit of the response functions may allow

the extreme temperatures of the approximate solution to overshoot
the correct answer, while the product expansion method will
preserve the correct temperature extrema.

Actually, at a fixed frequency, there is an optimum thickness of

wall which maximizes the heat storage in the wall. This thickness
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cont.

16.

17.

18.

7%=

is L , since for II > ijﬁi.l> %—,

x| vz

T(x) is negative and the

increasing thickness slightly diminishes the heat stored in the
wall. However, this optimum thickness varies with frequency, so
for a range of frequencies, a thicker wall should always store
slightly more heat than a thinner wall.

The NBSLD program (see Ref. 11 for program description) assumes
that the solar gain is spread uniformly over all interior surfaces.
The Cal/ERDA or DOE-1 program (see Ref. 18) and NECAP (see Ref. 12)
both use the weighting factors given by ASHRAE (Ref. 15). The
derivation of these weighting factors has never been described in
a paper, but is based on some computer Tuns by G. P. Mitalas,
assuming typical office building conditions, such as light-colored
floors, relatively small windows (less than half of wall area).
These conditions would not be appropriate for simulating passive
solar buildings (personal communication, G. P. Mitalas, telephone
4 July 1978). The TWOZONE program (see Ref. 8) uses weighting
factors for solar absorption based on the above results, also.

In addition, the results used in the programs simply distinguish
between light, medium, or heavy-weight rooms; they do not consider
the precise materials properties (conductively, heat capacity,
etc.) of the walls.

This sinusoidal solar gain function is shown to be a good
approximation to the data for at least one particular climate

in Ref. 21.

See Ref. 9, Chapter IV.
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Measurements performed on identical townhouses by the Princeton
Center for Environmental Studies show a 2:1 variation in energy
consumption between different houses. Only about 2/3 of this
variation can be accounted for by the behavior of the occupants
See Refs. 9 and 14 for details.

See Ref. 19 for a discussion of simulating Fourier or Laplace
response functions using infinite product expansions.

See the discussion of the Kelbaugh house in Ref. 7.

As mentioned, the failures are not usually written up, so there
is no written citation for this case. This example is based

on conversations with Philip Caesar of the Solar Center,

62 Townsend Street, San Francisco. Both he and Professor
Marshall Merriam of the University of California have said

that there are many such houses in existence.

The British "Admittance Procedure' can be used to model building
response to simplified "design-condition'" weather, as is done
in Ref. 33. However, the procedure is of more limited
applicability than our model; it is intended for use in

describing summer conditions only.
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Table 1

A PROGRAM FOR EVALUATING THE LUMPED PARAMETER EQUATIONS

1 hw Uwi
Nw = A—-/\ A
qq hw+Uwi
1 e Ugy
Nf = ~ A ~
Ih hf+Ufi
NR = 1 + NW+Nf
Nw OLw Nf G %r
NS = . + = +—;—-—-
Ui Vs Yy
9
Xw - C Nw
W
q
A= —N
£ Cf f

N U
£
Ay = A <1-—- e
R £
L NN G,
F NR CWNR
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Np CeNp
A
W .
NR Uq
o N
Y\h R
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A i
_W + wO
NR Cw
Af
Np Uq
o N
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>\ <_ " —>
f ~ N
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Np  Cg
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aq (AG+in) +ag AF

(p+in,) (hgriv,) - Aphy

a6(AP+iwo)+a3 AQ

(Apdub)(AG+iwo)-iAFAQ
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aS(AP-Fiwl)—+a2 AQ
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_AZntn —Alntn -1 -(Aldtd * Alntn)
Y4 = (e - e ) 1-e
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ALt -AL t 1 iw t -AL t
Y = (e 2nn C e In n) {(X - x )1 - e od e In n)
6 A A
wd wh
iw.t -A -A ot
1°d Inn In'n
fxg (- )+ My -T, ) -e BTy
SW de Hwn
At
N 1d°d
Y1 = e - Y4
-A Lt
3 2dd
Y2 = e - Y5
1w t 1w, t
d 1°d
Y. = (x - X, ) e + Xa € + (T, -T, ) -Y
1 Awd AWH Sw de Hwn 6
1w t 1w, t
od 1°d
Q = V5 K F Y Ky - J 0y X Ve lexge My -1y ol
1 3 T1In 6 2n Afd Afn Sf Hfd an
-A Lt
_ 1d-d
Q= Kig © -y Ky oYy Ky
-At
_ 2dd
Qg = Kygq © - Yy Ky - Y5 Ky
-A -A
Q4=(XA _XA)+XS +(TH _TH)-YSK]_ S 1n—Y6e 2
fd n fd fn n



Table 1 (cont.)p.5

A
U = Ky - ¥y K@
A
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. WQy + Qg
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Table la
Definitions: Trombe Wall Case
- hwc UCR Uw1 N Uwo
G f (ﬁ +Ua) fj
q
Uq hf + Ufi
Y N
h
___1+Nf+/\wo+ACI§ N +UCA‘AWS CR
U ru \ "¢ 0 .+
q q wi
S hwc UCR Op Nf OLR
= ~ ~ A ~ + ”~ + ~
Uq(Uwi + Ua) z Ufi Uq
6, O B 20, 0
-1 CA "CR wC CA CR
~ ~ /\2 ~ ~
Uq z X (Uwi + Ua)
_1(Ugi Pe
C ~ A
w\Ug; + b
1 [~ hwo UCR wi
= E—-’ UWO + :: ~ ~
W L(Uwi * Ua)
1 Uwi Ua ~ Nw
"l Yol R
wlU. +U R
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Table 2. Solution to the Distributed Parameter Model

3 B(aw) inw t B(w ) iw t
_ = (o] - (0] - B(O) d + AS \ d w
TR(t) = <S +AS cos mwt> { El NGO d e *5 A(0) © ] W A(ww) o ©
, teady-state | weather varyi
P E— S 14 ying
l iurnal solar term ————————4 '<—solar-¢' ¢ solar S
o u AT C(ww) elwwt e C(mo) elwot L H
A Aw A(ww) A A(mo) A(O),R\
steady state |weather varying L_ diurnal _, steady-state
temperature |~ temperature temperature heater
where S is the average solar gain amplitude

ASW is the weather-variation of solar gain amplitude

w ~is the weather. frequency

b =
1

w w -inw _t
o) 1 o-d
- 5 (1 +e ) nw # Wy
wy -(nmo)
d =
n
w_ t
o d —
w1 Wy = 0

TA is average ambient temperature

ATA is the complex amplitude of diurnal ambient temperature
variation and A, B and C are functions of frequency
defined below:

~

AW) = Uy +h (1 - hg Ry )+ h (1= hy Ry )+ he(l - he Ryg)




~83-

Table 2 (cont.) p.2

B(w)

I
Q
+
Q
(0]
=
[0}
w
+
o)
g
o
7
b=
+
o)
e
o
N
5
th

i
(o=t
-+
g
o

-
+
=
=)

C(w)

where the subscripts e, p, and f stand for envelope walls,

partition walls, and floor

The response functions Rl' and R2_ are functions of frequency
J J

which depend on materials properties. They are:

cosh kd + —%_ sinh kd

R _ RKk
l1,e or £~ T h .
(h + E) cosh kd + (Kk + ﬁﬁﬁa sinh kd
1
R

R =
2,e or T 1 h .
(h + ‘R") cosh kd + (Kk + m) sinh kd

iwpc wpc
where k= § —F = Y P (1+i)

R is the thermal resistance of the insulation on the

outside of the wall,

R1 has the same form for R + o« ,
P
RZ = 0 3
p
and cosh x(1+i) = cosh x cos x + i sinh x sin x

Il

sinh x(1+i) sinh x cos x + i cosh x sin x

for x real
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Table 4

Response Functions for 2" Thick Concrete”

Continuum Model

R ( hr—ft2—°F
1

Lumped Model

hr—ftz—oF ) R

R R
@ Btu ) 2 1 ( Btu
0 211 684 211 684
prmonth 211 o—00%  ggy o004 pq gm0 gy =005
2m/week .211 e 0101 g3 o -0171 211 0091 e e—.0131
2m/day 210 o 06H  gg1 o 119 51 7e 0601 gy o091
: _.236i -.119i _.1814
om/12 hrs  .208 e 1561 .672°¢ .208 e 672 e
21/ 8 hrs  .204 e 2008 g5g o7r3OE  pgq o7 1761 g5g o720
21/ 5 hes 175 e 4961 5ag o7o8551 175 o7e39LE 555 705N
: 3 Btu
* Assumes ASHRAE properties: p = 144 lbs/ft", Cp = 156 e
1 -0
h =1.5 Btu K = .54 . btu_
' % ®Frhr-ft

ftz—hr—degF
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Table 5 .
Response Functions for 4" Thick Wood

Continuum Model Lumped Model
2 o 2 o .
(hr-ft°-°F hr-ft“-°F
v Rl‘ Btu ) R2 Rl ( Btu ) R2
0 .587 .120 .587 .120
27/month 587 ¢~ -00°1 .120 e—'0271 587 ¢~ -0041 120 e -0171
21/ week 586 e--0221 119 e—.1131 586 e—.0151 119 e—.0711
21/day 562 ¢ 1301 106 o 7P9 gy 70901 44, -.462i
2m/8 hrs .489 e_'2461 .061 e_1'8561 .502 e"117i .067 e‘-9811
21/3 hrs 410 e—.3351 018 e~ 3.4741 468 e—.0641 029 e—1,3251
* . . 3 6
Assumes materials properties of pCp = 9 Btu/ft"-"F,
K = 0.068 Btu/°F-hr-ft ,

2

=
"

1.5 Btu/°F~hr-ft
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Table 6

Response Functions for 1%-ft Thick Concrete

Continuum Model

Lumped Model (thin wall)

2
hr-ft -°F hr-ft™-°F
v Rl( Btu ) RZ Rl ( But ) RZ
0 . 538, .194 .538 .194
21/month 535 ¢ 0521 19p oT188T g0 =039 4, -.1228
2m/week .503 ¢ - 1981 170 - 7681 505 e 1421 14 4831
2m/day 329 o748 o35 FIISTL gyg 071161 g5y om1.3051
om/8 hrs.  .233 e "°°°1 ooz oT- 4671 366 e 0451 17 714801
*
Assumes ASHRAE properties p = 144 EPE-, C_ = .156-—§EE~—
£t2 P b= °F
Btu Btu
K= .54 °F-hr-ft ? h=1.5 °F—ftl—hr
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Table 8

RESPONSE FUNCTIONS FOR 1%-FOOT THICK CONCRETE*

Continuum Model

Lumped Model

)
hr- ft —°F hr—ft’=CF
Y ( ) R ( Btu )RZ
0 538 .194 .538
on/month  .535 e 0921 19 o e188L g5y (79331 495 --0021
21 /week 503 e 198 170 o7 TOBL 5oy o7 B3 1y o7e2090
om/2-days  .392 e S04 g3 £72:0451 459 o734 4y o-748E
21/ day 320 e 4281 o35 o3 I3TL 550 o736 ggp 710761
21/8 hours  .233 e 0% o3 &*+4071 560 71931 g3g o71-3431
* : . 1bs Btu
Assumes ASHRAE materials properties of p = 144 — , C_ = .156 ——— ,
£t 3 p 1b-°F
K = Btu , h=1.5 Btu
ft-°F-hr Ft2_°F-hr
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Table 9

RESPONSE FUNCTIONS FOR 20-FOOT (SEMI-INFINITE) CONCRETE "

R, ONLY; R, ~ O

1 2
* % %
w continuum model R, lumped model Ry
0 .655 (.667) .655 (.667)
2n/yr .638 e—'0431(.638 e‘-0421) 655 o +0041 (.667 e—'OOSIj
21/month 573 o -1321 653 o~ 054E ( geq o056,
21/ week 492 ™ 2371 620 & 2101 ( g9 72241y
21/ day (329 ¢ 4281 330 o=-4241 (539 o=-4281
21/ 8-hr 234 &2 260 e 1971 (260 719
*
Assumes ASHRAE materials properties of p = 144 lbf-, C = .156 gtp
g5 P F-1b
K =.54 - h=1.5—
degF-hr-ft °F—hr—ft2

**

Dimensions of R1 are °F—ft2—hr/Btu.
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Table 10

VALUES OF THE LUMPED PARAMETERS, CONCRETE*

d U, (Btu/ F-hr-£t%) U_(Btu/ F-hr-£t%)  C(Btu/"F-ft?)
Thin wall Thick wall thin  thick thin thick
model model
%inch 51.8 17.3 51
1 inch 25.6 8.68 1.00
2 inch 12.62 4.36 1.99
3 inch 8.30 2.92 2.96
8 inch 2.97 2.52 1.114 1.194 7.65 9.64
1
10" inch 2.28 2.52 .875 .844 9.70 9.64
1 foot - 1.93 2.52 .750 .687 11.28 9.64
13 foot 1.245 2.52 .506 .420 16.61 9.64
3 foot 2.52 .194 9.64
o 2.52 0 9.64
* . . _ 1bs Btu
Assumes ASHRAE materials properties p = 144 — . C. = .156 o
ft3 b F-1b
_ Btu _ Btu
K .54 SFf LT’ h 1.5 —
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Table 11

VALUES OF THE LUMPED PARAMETERS, WOOD*

Ui(Btu/°F—hr—ft2) UO(Btu/°F-ft2—hr) C(Btu/°F-ft2)
d
thin wall thick wall - thin thick thin thick
model model
1.
T inch 12.73 4.393 .100
1 inch 2.995 1.121 383
2 inch 1.426 5713 744
4 inch 676 564 292 .320 1.442 2.164
5 inch 534 .564 .235  .230 1.790 2.164
6 inch 440 .564 197 179 2.135 2.164
9 inch .287 564 133,108 3.167 2.164
1 foot ‘ 564 0773 2.164
.564 0 2.164

*

Assumes materials properties of pCp = 9 Btu/°F—ft3, K = .068 Btu/°F-ft-hr |

h = 1.5 Btu/°F-ft2-hr



1. Interior and exterior photographs of a passive solar house at First
Village in Santa Fe, New Mexico. Some of the windows seen in the
exterior view provide direct solar gain to the inside, where the sun-
light falls on the brick floor. Other windows illuminate Trombe walls

of 1% foot concrete. (Photos by the author.)
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Room temperature vs. Time of day

50

[ I I l | |

I | l I | I

O .
12 Mid I2 Noon 12 Mid
Time of day
XBL 786-1I00
Fig. 2. Room temperature vs. time of day for a passive solar house

under four different cases of solar energy absorption.
In case A, 6/7 of the solar energy is absorbed on the floor
and 1/7 is absorbed on the walls (afl = 6/7;

o =
oor walls

1/7, and « = 0). Cases B and C successively double
room

the solar absorption on the walls (awalls) and decrease

the absorption on the floor (o ). In case D all
floor

sunlight is absorbed in the air or on light furniture or

floor = %walls ~ 0 and %room © . ALl

temperatures are measured with respect to average ambient

carpets (o

temperature. The house is described in Appendix 2. 3.
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N

T
XBL 787-1267

Sketch of the path of solar energy as it is absorbed
and reflected from surfaces in a direct gain building.
Actual reflections are likely to be diffuse rather

than specular.
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Heat Transfers for the Lumped Parameter Model

(TT)= 04

XBL 787-1269

Fig. 4. 1Inside the room at the left the temperature is TR.
Solar energy strikes the inside surface of the jth
material; the resulting surface temperature is Tg,.

Heat is transferred from the surface to the inside

of the wall; the heat flow is given by Gij(TSj - Tj)

or Qin' The interior of the wall is at a temperature Tj.
Heat flows from the interior to the ambient air at

right; this heat flow is given by Go_(Tj SN
j
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Fig. 5.

t=24h
XBL 787-1272

Assumed form of the solar gain through a south window
as a function of time. The same function repeats every
day. In this sketch the function jumps discontinuously
from zero to a finite value at t =0 and jumps back at
t=t;. In most cases the curve begins and ends smoothly

at zero at these times.
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Room temperature vs. time of day

11t 1 1 1 T 11

4 8 N 4 8 M
Time

XBL 787-1266

Room temperature elevation as a function of time of day for
different models of solar absorption. The dashed line describes
the case where solar heat is absorbed in a massive room; the
solid lines graph the response when sunlight is absorbed on
material surfaces and transferred to massless room air. The
two solid lines represent two different proportions of solar

absorption on different material surfaces.



Fig.
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CA*'c A

XBL 787-1268

Heat transfers for the Trombe wall model. Sunlight
enters through the window at left and is absorbed on
the left-hand surface of the Trombe wall. This wall
surface 1s in thermal contact with the channel air
which is at a temperature of Tc' The channel can
lose heat to the outside air at left or to the

room at at right.
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Response functions Rl vs. frequency

PO 2 s e 1 1 0 1111 N I O I A B
0.5
| 4" wood |
Ay A
q\J a™)
1.0 [ -
0.5 e
~ 6" wood 7
0, | Porrinu I |il||l||| l| ||l|||l| L L L1 L L1 L1l
o 1072 1075 10! l . | 10
Frequency (radians/hour)
| i
Period: yr. mo. | wk | 2-d.li2-n]  3-n.

2-wk. 4-d. d. 8-h.
XBL 786 - 1105A

Fig. 8. Response functions as a function of frequency. This figure
plots 1ogIR1| vs. logw for 4" and 6'" wood. The solid lines
represent the continuum response functions. The heavy dashed
lines describe the thick-wall lumped model response functions,

while the light dashed lines represent thin-wall functions.
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Response functions IRl vs. frequency

|-() [ 1 T TTTI0 [T TTTHH T T TTTT T T TTTTI T TTIT
O|5 [ ]
|5 concrete ~ _  _
|.OT: ]
- —— ]
0.5 -
~ Semi-infinite concrete ]
0, | L1 il ] |||||1|l| 2|| |1H||l||| [ LIdld L L1 11Tl
j0~* [on 107 | o || 10
Frequency (radians/hour)
Period: yr. mo. wk. | 2-d.|I12-h.| 3-h.

2-wk. 4-d.  d 8-h

XBL 786- 1103A
Fig. 9. Response functions aska function of frequency. This figure
plots 1og|R1| vs. log w for 1% foot thick and semi-infinite
concrete. The solid lines represent the continuum response
functions; the heavy dashed lines describe the thick-wall
lumped model response functions; and the light dashed lines

represent thin-wall functions.
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30 1T ] ! !
Lumped parameters
VS.
o5 |- Wall thickness, concrete
U,, thin
20 / C, thick — 10
— 9
5
2| =154 1°
Q|5 _
o' C, thin !
- — 6
- =D
10 — 5 o'
+
UO' thin — 3
5 I
iC U, thick 2
2 - - ' 7!
: UO’ thick
oL 11 | | 0
‘II 2" 3" 6” loll II I él..l 2| \
Thickness
XBL 786-I113

Fig. 10. Values of the lumped parameters as a function of wall
thickness (d) for concrete. Values are tabulated in
Table 10.
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50 I I I | i i

Room temperature vs. Time of day

40— Lumped parameter comparison with exact solution |

0 I I | l [ |
12 Mid 12 Noon 12 Mid

XBL 786- |IOIA

Fig. 11. Room temperature elevation vs. time for comparing the
lumped parameter approximation to an exact solution.
The exact solution for room temperature of the building
described in Appendix 2.5B is graphed as a dotted line;
the lumped parameter approximation is plotted as a

solid line.
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non-circulating Trombe wall — a thick concrete wall which is located
directly behind the window. The air channel between the wall and the
window is sealed to prevent air exchange between the channel and the
room; thus the path for solar heat gain into the house requires
absorption on the front surface of the Trombe wall and diffusion
through the wall into the room.

Accurate modelling of the test buildings requires knowledge of
the materials properties of the concrete. This is not a trivial look-up
exercise, since the conductivity and heat capacity of concrete can
vary over a factor of two range even at fixed density.1 Los Alamos
staff measured the conductivify; their estimate appears to be consistent
with the data to high accuracy. However, the heat capacity was not
measured, and handbook values appear to give inaccurate results.

We therefore begin our discussion of data analysis with a
derivation of the heat capacity of Los Alamos concrete from data
obtained using thermocouples buried inside the concrete. We conclude
that the heat capacity per unit volume is 18 Btu/°F—ft3 to within about
7%. This determination is described in Sec. 3.2.

In Sec. 3.3, we discuss modelling the direct gain test cell.

We first describe the cell, and then evaluate model parameters. Using
these parameters, and a design day chosen for time-independent weather

patterns, we compare room temperature measurements with predictions of
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the lumped parameter and distributed parameter models. We then use
another design day chosen for having weather history which could be
described by one sinusoidal weather term as in Sec. 2.4. Data for

that day are compared with the predictions of Eq. (2.16). Finally,
we use a lumped-parameter approach to model the building's response
to 18 days of observed weather; this result is compared to measured
room temperatures.

We model the Trombe wall cell in Sec. 3.4. As before, we
first describe the cell and evaluate its parameters. We note that
the lumped parameter approach breaks down for this thick a wall with
no thermocirculation, as shown in Appendix 2.5A, and consequently we
use only the distributed parameter model. For the two test days
described above, we calculate model predictions and compare these
with measurements.

In the following section, 3.5, we discuss the Sonoma house
experiment. This house used night insulation of its collector window,
so it can only be modelled using the lumped parameter approach.

The results of these experiments show excellent agreement
between data and experiment. This agreement was obtained, at least
in the case of the Los Alamos buildings, using 'first guess' values
of quantities not directly measured (eg. transmissivities of the
windows, air exchange rates); that is, we did not adjust building
parameter values to get a better fit.

These results, along with the mathematical similarity between
our model and computer codes such as NBSLD, provide some credibility

to the model. It remains to be seen whether real buildings
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(~ 150 m2 in floor area) can be adequately described by single-zone
models. However, the application of our model to the small buildings
described here should provide some insight into what temperatures

should be measured to make that comparison efficiently.
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3.2 Determination of the Heat Capacity of LASL Concrete

In this section, we use temperature data collected from
thermocouples located at different positions within the concrete in
the LASL test cells to find the heat capacity of LASL concrete. We
conclude that its heat capacity is 18 = 1 Btu/°F—ft3; considerably
lower than many handbook estimates but still within the range of
values observed in the literature.2

The determination is based on measuring the diffusivity of
temperature in the concrete. Based on the diffusion equation (2.1),

we expect to find temperature distributions inside a slab of concrete

which can be expressed as in Eq. (2.5) as

T(x,t) = {.A cosh kd(1-£) + B sinh kd(l—E)} etWt
(1)
iwpe
where k = % P
X
t=1q
K = the conductivity of the concrete
oc = the heat capacity per unit volume
b

The coefficients A and B are determined by the boundary
conditions.
Based on Eq. (1), if we Fourier-analyze temperature data, we

should find that for any frequency w,

T(x,w) = A cosh kd(1-£) + B sinh kd(1-&) (2)
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If we know the temperature T(w) for the front and back surfaces
of the material, we can determine A and B from (2) evaluated at & = 0
and £ = 1, respectively. If we then know T(w) for some intermediate
value of £, we can determine k such that the prediction from (2) most
closely agrees with the measurement. Knowing k gives us the heat
capacity pcP provided that K, the conductivity, is known.

In fact, K was measured at Los Alamos, it is equal to
.80 Btu/°F-hr-ft, which is consistent with our model, Thus we will
use the interior temperature data from the LASL concrete walls to
find pcp as described:

We perform the experiments using the component of temperature
at frequency W, = 2m/ 24 hours since there is a large signal at that
frequency. The Fourier-transformed temperature for a cycle of length

P is given by

9 t=P -iwt
T(w) = —p—/ T(t) e dt (3)

t

(o}

Our data is available only at hourly intervals, so we use the

approximation
P-1hr _i
T) = 25 T e ot 4)
o ) A
n=

We describe four experiments, one using the Trombe cell data
for 24 February 1978, which was chosen for having time-independent
weather patterns; the second uses the direct gain cell for the same

date; the third uses the Trombe cell data for 8 March 1978; and the
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fourth uses the Trombe cell data for the 9-day period 21 February to

1 March 1978. Following these experiments is a discussion of results.

Trombe Wall Test: 24 February 1978

The Trombe wall has four thermocouples hooked up to different
depths of wall at mid-height. Channel 41 is attached to the front
(window-side) surface, Channel 43 is buried 8 inches into the concrete
from the front, Channel 44 is 14 inches into the material, and
Channel 45 measures back surface (room side) temperature.

Using (4) for the Fourier transform temperatures, we find that

Ty, = 28.09¢ 139872
T, - 9 290~ 15-1941
T, - 6. 0l 158565
T, - 5 e i5-8067

Using (2) to find A and B from T41 and T45, we find that A==T45.

B will then depend on the choice of pcp. We choose several test values
of pcp, calculate B, and then use A and B to predict T43 and T44. The

results are:

For pcp = 28 Btu/ft3-°F - the LASL handbook-estimate, we find
7.042¢7> 6051

5.667¢ 00051

T43

1}

T

44
This is relatively poor agreement with the data.

For pc = 20 Btu/ft°-°F, we find

-5.32761
T43 = §8.80e

T

-5.90361
44 ©

6.14
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These are apparently pretty close; we shall measure closeness of
fit by calculating the squared fractional error for each temperature
and adding. We find that A2, = 0.0191; Ai4= 0.0027, so A?=0.0217

For pc_ = 18 Btu/ft3-°F, we calculate

p
_ -5.24911
T43 = 9.325e
-5.8512i
T44 = 6.24e
The errors are: A23= 0.00319; Ai4= 0.00145, so A2= 0.00464,

considerably smaller than for pcp = 20.

For pcp =17 Btu/ft3—°F,

-5.20721
e

T 9.60

43

-5.82761
e

T 6.28

44

2

2
44 0.00288 so A” = 0.00475.

The errors are: AiSZ 0.00187; A
We see that reducing pcP from 18 to 17 improves the fit for T43 but
worsens it for T44; the total squared error is slightly larger for
pcp = 17,

As a check on this experiment, if we really have a day with no
long-term weather trends, the average temperatures (that is, the

Fourier coefficient for w = 0) should be along a straight line. We

calculate the steady state terms T ; they are

Ty = 108.33
Ty5 = 96.48
Ty = 89.17
T, . = 86.94
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These temperatures are graphed in Fig. 1; as shown, the intermediate
temperatures T43 and T44 are either on or very close to a straight
line between the surface temperatures.

Thus we conclude from this experiment that pcp is between 17 and

18 Btu/°F—ft3 and slightly closer to 18.

Direct Gain Cell Test: 24 February 1978

The direct gain cell has thermocouples on both inside (room side)
and outside surfaces of the concrete and one in the interior. There
are sets of thermocouples in 3 positions on the floor. We look at data
from the set at the south end of the floor to get the largest signal
(largest oscillations in temperature).

Since we do not know from direct measurement how deep into the
material the interior thermocouple is located, we determine its depth
using average temperatures. We calculate average and daily Fourier
components of the temperatures for Channel 54, the top (room) surface
temperature; Channel 53, the interior temperature; and Channel 52, the

bottom surface temperature, as follows:

T, = 93.625
Tés = 92,77
Téz = 91.44
T, - 23 326t 12.0453
Teq = 21.59¢ 11730
T = 20 g2eTi1-5803

52
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Using the average temperature data, we find that the depth of the
5/8

Channel 53 thermocouple is 2.20 inches into the 57 "-inch-thick concrete,

so &£ =0.3913 for this measurement.
We next use T54 and Tc, and our guesses for pcp to determine
A and B from (2) and use (2) to predict TSS'
We first check pcp = 28 Btu/°F—ft3. We find that the prediction

= 21.16Se+11'6445. This is off in both magnitude and

3

for T53 is T53

phase; the fractional error squared is 7.55 x 10~
Our next guess for pcp is 18 Btu/°F—ft3. Then our prediction is

+11.727 5

T., = 21.480e The fractional squared error is 3.49 x 10 7;

53
considerably smaller than the previous estimate.
We next try pcp = 17.5 Btu/°F-ft3 based on the results of the

previous experiment. We find that

_ +i1.7312
T s = 21.494e

The error-squared A2 = 2.14 x 10_5, slightly smaller than the
previous case.

+11.7354

= 21.506e and A% = 4.39 x 107

° 3
For pcP = 17 Btu/°F-ft", T53

(We also note that if we had assumed & = 1/2 or the interior
thermocouple located in the exact center of the concrete, the fits
would not be very good until pcp ~ 12 Btu/ft3—°F, which is implausibly
small.)

From this test, we conclude that pcp is between 17.5 and 18
Btu/°F—ft3; and much closer to 17.5. This agrees with the previous

result.
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Trombe Cell Data, 8 March 1978

We use the same test points as for the previous Trombe wall
experiment, but for a different day. March 8 had large solar gain on
the wall (large signal) but the weather was varying from day to day.

We display the data for T and T below:

l

T, = 92.29
T, = 80.92

T44 = 75.17

Tﬁs = 73.71

T,, = 26.507¢ 2+ 2291
T 5 = 9.904¢t1-2%3
1, = 62500107182
T, = 6.028610:7274

Note that the relationship between the T's is not as linear as
it was for the 24th of February.

We again calculate T43 and T44 from (2) using T41 and T45 to
find A and B, as before.

For pc_ = 28,
P p

T 7.113¢0 62891

43
_ 0.4001i
Tyq = 5.847e

These are again clearly in error.



Here Ais==0.062 and A% =0.021 so A®=0.083

For pc_ =
. P

Then T43

Tha

2 _
Ay5 = 0.0271 and A
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9’414610.9820

6.601610'5882

2
44

16

i1.0689

9.970 e

_ 6.733010-6387

2
44

we check pcp = 15.

Then T43
Tya
2
A4

We next try pcp =

T

43
Tya

2 2
A7 = 0.00946; A7,

For pc_ =

p

Ty3
Tpa

2 2

AT, =0.00941; A

43 44

- 10.257611.1150

6.792e10'6658

_ VA 2 _
3—-0.0157, A44-0.0105 so A 0.0257.

14 :

i1.1628

10.547e
10.6943

6.845e

- 0.00969; A% = 0.01915

13
10.841e 12126

6,891610"7241

= 0.01055 so A2==0.01996

=0.0128 so Az = 0.0399.

Since A2 is still decreasing,
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Thus from this experiment pcP is somewhat less than 14 Btu/°F—f1:3

but greater than 13. Why the discrepancy with the other experiments?
The apparent reason is that the Fourier transform formula ((3) or (4))
is only accurate in picking out the daily compomnent when there are no
components longer than P, the length of the data record, present. This
is certainly not true for 8 March. Table 1 shows average temperatures
and insolation estimates for Los Alamos. While the days before the
24th of February are relatively alike, the days before and after the
8th of March show much variation.

This will affect the Fourier transform as follows: Suppose that

in addition to the daily-cycling temperatures there is an error term

iw €
resulting from a long weather cycle of Tee Y . Thus T = To(t) +
iwwt
Tee
Then (3) says that
t=P . t=
2 -iwgt 2 P +i(ww-w0)t
Tlw,) = E[ T, (t) e dt + 5 f T, e dt (5)
t=0 t=0
2T [ iwa
o - e [P
e second term of (5) is equal to P(ww‘wo) e 1.

This is an error term: a term that comes up because we tried to
Fourier-analyze a long-period phenomenon in terms of harmonics of a
short period P.

The fact that an error term is present is clear from looking at
the values of T41(t), T43(t), T44(t), and T45(t) at the beginning and

end of March 8. In principle, these temperatures should be equal at
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both times, but for March 8, they are 8 or 9° F higher at the end of the

day than at the beginning.

Trombe Cell Data, 9-day period

We attempt to correct for the errors in the previous experiment
caused by long-term weather variations in two ways. First, we use a
longer test period P, and second, we end the period such that the
final period temperatures are lower than the initial temperatures, in
contrast to the previous cases.

This will produce a higher estimate for pcp. This high estimate
allows the estimation of upper and lower bounds for pcp: the estimate
for 24 February when temperatures were slowly rising provides a lower
bound and the one for this period will provide an upper bound.

We find that

T, - 1976761231954
T, = 6.0351e0 787%0
1, - 4501561025921
1, = 5994661026404

We check pcp = 28 to confirm that it gives unrealistic results
in this case; we then try pcp = 18,19, and 20.

For pc = 18 Btu/°F-ft>

_ 11,0643
T,s = 6.227¢
_ 10.2828
Ty, = 4.224e
2 2 2

A, =0.0067; A ,6=0.00087; A" =0.00766.
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For pc. = 19
P
i1.023
T43 = 6.050e
) i0.2566
T,, = 4.206¢
A% = 00113 : A® = .00050 A% = 00163
43 = - 3 Bgg = =
For pc = 20
P
_ 10.9832
T43 = 5.878e
) 10.2315
T,, = 4.185¢
2 2 2
Mys = -00071 ; AZ, = .00149 A% = 00220

Thus from this experiment, we find pcP ~ 19.3 .

Conclusions

From the four experiments described here, we can observe that
a rising secular trend of temperature whose timescale is much longer
than the period of integration P will result in too low an estimate of
Qcp, while a falling trend will result in too high an estimate. Based
on our data, we can conclude that 17.5 < pcp < 19.3 .

Since the conductivity of the concrete is only accurate to two
significant figures, we will choose a 2-digit estimate for pcp. We
take pcp = 18 Btu/°F—ft3 because two of the experiments support 18 as
the closer estimate and because despite a slow secular increase in
temperature, the weather seems closer to being periodic on the day for
which pcp = 17.5 was derived. Further, we would expect that since the

direct gain wall is only about 1/3 as thick as the Trombe wall, secular
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changes in weather would affect the response of these two walls in
different ways. The fact that both produce nearly identical estimates
of pcp (to 1%) suggests that their value is close to the truth.

Thus we conclude that heat capacity per unit volume of the
Los Alamos concrete is 18 * 1 Btu/°F—ft2 with the error most likely
occurring on the high side, and use this value in subsequent
calculations. We note that 5-10% errors in pcp will introduce
imperceptibly small errors into the predictions that follow; however,

larger errors (~ 50%) will produce noticeable disagreements.
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3. EXPERIMENTAL VALIDATION- OF THE MODELS

3.1 Introduction and Overview of Results

The passive solar building models of Sec. 2 were derived from
theory, with no reference to measurements of temperatures in real
buildings. Since the theory is based on well-established relationships
and relatively straightforward mathematics,-we expect that the models
should bear a close relationship to experiments, at least for simple
buildings.

This expectation is borne out by comparisons described in this
section with three small test buildings. There is very little hour-
by-hour temperature data available on passive solar buildings; these
three buildings were chosen primarily because data existed. Two of
the buildings are located at Los Alamos Scientific Laboratory (LASL)
in New Mexico. We obtained detailed data for a three-week period in
February-March 1978 for these two structures; comparisons with model
predictions are shown in Figs. 5, 6, 7, 9, and 10.

The third building was a poorly-instrumented demonstration-house
constructed-.at California State University at Sonoma and since
demolished. Data and descriptive material for this building are less
accurate, but we still obtain reasonable agreement between model and
data, as shown in Fig. 12.

The Los Alamos buildings are small (~ 2m x 2m) well-insulated
boxes with large south windows. Thermal storage is provided by solid
concrete blocks. One of the cells is a direct-gain building; it has

concrete on the inside of its envelope walls. The other contains a
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3.3 The Direct Gain Cell Comparisons

We describe in this section the experiments performed on the
LASL direct gain test cell. We first derive the thermal parameters from
the description of the cell; we then choose appropriate weather to
model and parameterize the weather. Using these results as input to the
model, we compare model predictions with room temperature data.
Comparisons are performed using both the lumped parameter approach
and the distributed parameter approach. When they are both applicable,
they agree almost perfectly; however, there are some experiments where
only one of the models can be used. The results of the experiments are

summarized in Figs. 5, 6 and 7.

3.3.1 Direct Gain Cell Description

The direct gain cell is a closet-sized box about 5' x 7' (~1.5x Zm)
in floor area and 10 feet (3m) high. The south wall is almost entirely
glazed, while the remaining walls are covered in many places by 5-5/8 inch
thick (14.3 cm) concrete blocks. The walls themselves are constructed
of standard 2 % 4 wood framing with fiberglass insulation; the thermal
resistance of the insulation is R-11 (11°F—ft2—hr/Btu. or 1.94 °C—m2/w).
Inside the framing is an inch (2.54 cm) of polystyrene board insulation
with a thermal resistance of R-5. Thus a wall section, going from inside
to outside, consists of concrete block, styrofoam board and wood framing.

A sketch of the cell is presented in Fig. 2; it provides the
dimensions of the cell, based on measurements by the author. As shown in
the figure, only part of the inside wall surface area is concrete blocks.

The blocks cover an irregular area which intercepts all the direct
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sunlight on a winter day near the solstice . Thus all the direct
sunlight hits the concrete at all times.

There are only four channels for heat loss from the room air:
infiltration, loss through the glass (collector), heat transfer to the
styrofoam envelope wall surfaces, and heat transfer to the concrete.

The first three channels are all relatively fast heat transfers, so we
lump their effects into ﬁq' We treat the concrete as being the only
heavy material, since the properties of the blocks lining the walls are
identical to those of the concrete on the floor. (The film coefficients
may be slightly different, but the results are not very sensitive to

the exact value of h chosen, as shown later in this section.)

Evaluation of Building Parameter

We next use the materials properties of the elements used in
construction of the cell along with the measurements in Fig., 2 to
derive building parameters for the lumped parameter and for the
distributed parameter models.

We first evaluate the parameters for the concrete. We consider
as concrete surface area only those areas which face the inside of the
cell; that is, we ignore the small areas of concrete which are parallel
to the glazing and only two inches behind it. Thus the surface areas

of concrete are:

side walls: 2 walls x{8.92' X 35.92' + 1.30" x4.49'} = 80.60 £t°
back walls: 4.50'x5.25 = 22.57 ft°
floor  : 4.30'x6.88" = 29.58 f£t’

Total concrete surface area 133.75 £t2
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The lumped parameters for the concrete are given by Table 2.3
with K=0.8 Btu/°F-ft -hr; pc, =18 Btu/°F-ft°; d=0.4688 ft. We assume
h=1.0 Btu/°F—ft2—hr; this low value is chosen because radiation heat
exchange with the room air is retarded by the simple geometry of the
room. Radiation from one part of the concrete has a large probability
of striking another part of the concrete, while some of the radiant
heat striking the styrofoam will simply reradiate to the concrete.
Since the radiative part of h is usually about 1 Btu/ftz-degF—hr, we
reduce this value by 50%; together‘with the convective contribution
of about 1/2 Btu/ftz—degF—hr, we get h £ 1. We take the outside
jinsulation to be R-15, corresponding to R-5 for one inch of styrofoam
and R-10 for a frame wall with 20% wood and 80% insulation (R-11), with
plywood exterior siding.

The assumptions set U, equal to 4.082 Btu/ft2—°F-hr, UO = 0.06518
Btu/ftz—degF—hr, and C = 8.055 Btu/ft2-°F. (These are derived from the
thin-wall model; the thick-wall model would have set C = 8.41). Thus
for the concrete, Gci = 546 Btu/degF-hr, Gco = 8.718 Btu/°F-hr, and
CC = 1077.4 Btu/°F.

We next look at the collector window. The gross area of the

45.63 ftz.

window, including wooden supports, is 4'11" x 9' 3-3/8"
This area is relevant to calculating heat losses; using a handbook
U-value of 0.55 Btu/ftz—deg—hr for double pane glass, the heat transfer
coefficient is 25.10 Btu/deg-hr; this is part of the quick heat transfer
coefficient Gq' The area which actually collects sunlight is smaller.
The effective width is the area between the concrete on the side walls:

4,30 ft; while the effective height is the distance from the concrete
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floor to the top of the glass less the 2-7/8" of horizontal wood framing
in the window: 8.885 ft. Thus the effective collector area is 38.2 ftz.
We calculate the rest of ﬁq by adding infiltration losses to
conduction losses through the styrofoam. Infiltration losses are
calculated by assuming 1/4 air change per hour, and multiplying by the
volume times the heat capacity of air at Los Alamos elevation:
0.014 Btu/°F—ft3. We use 1/4 air change as a guess based on the LASL
scientists' feeling that the house was ''very tight" and a comparison
with a very tight Princeton retrofit townhouse (see Ref. 25 ) which
had 1/4 air change per hour in ~ 5 mph winds. The approximate volume
is equal to the volume of a parallelopiped whose sides correspond to the
surfaces of concrete, plus a set of irregular volumes one concrete
block in thickness where mno concrete is present:
Volume = 9.67' x 4.30' x 7.04' + 2 x [(9.67' x 7.04' - 40.80 ftz) x 469 ft] +
[(5.25' x 9.67' - 22.57 £t2) x 4.69 ft] = 331.5 £t; thus the heat
transfer coefficient is 1.16 Btu/degF-hr.
Finally, the heat losses for the styrofoam are equal to the
area of styrofoam times the U-value of 1/16. (The resistance is 15
for the styrofoam-plus-wood-frame and 1 for the film coefficient).
The area of styrofoam includes only one side wall (since the other

is a party wall with the adjoining cell). It is:

ceiling 5.25'" x 7.56! = 39.69 ft2
side wall (9.67'x7.04' - 40.80 £t°)

+(9.67' -4.50") x0.469 ft2 29.70 ft?
back wall 5.25' x 9.67' - 22.57 £t° = 28.20 £t?

Total styrofoam area is 97.59 ft2



-124-

Thus total quick heat transfer coefficient in 25.10 Btu/°F-hr +

1.16 + (97.59 £t° x (1/16) Btu/ft’-degF-hr) = 32.4 Btu/°F-hr = ﬁq.
We next estimate radiation balance. The estimate is very crude

but should give an approximate idea of the values of the radiation

balance parameters a. and o All the direct sunlight hits concrete,

R
SO Qp consists of that portion of sunlight which is diffusely reflected
from the concrete and absorbed on the styrofoam.

We assume that the concrete has about the same reflectivity as
the styrofoam (this appeared to be true); it also had approximately the
same area (including 29.70 ft2 of styrofoam party-wall). We roughly
measured reflected intensities as seven times larger over the
illuminated portions of the concrete compared to the shaded portion
(using a photographic light meter). If we assume that half the concrete
is illuminated and half shaded, then the 7:1 ratio of intensities implies
that 70% of the light is absorbed in the illuminated area and 30% in
the shaded area. Since the shaded area is 2/3 styrofoam, 20% of the
light is absorbed on the styrofoam and 80% on the concrete. Thus ac==0.8
and Op=0.2.. This is a very rough estimate, so we also calculate the

response for o

R==0.1 and ac==0-9- The difference between these

assumptions does not affect the building response very strongly.

We must also determine how much of the incident sunlight is
involved in this radiation balance. The transmissivity of double-pane
glass is approximately 75% averaged over typical angles of incidence.
But some of the sunlight is reflected inside the test cell and comes
back out through the window. The cell appears bright to the eye when

viewed from the outside; we assume that 5% of the incident light is
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re-reflected out the window., This 5% loss is consistent with the fluxes
calculated in determining the a's. So the net transmissivity of the
collector is 70%. Since the transmission was not measured, this estimate

could be in error by 5-10%.

3.3.2 Weather Parameterization

As input to the models, we need weather which has sinusoidal

- iw t
form. We will fit ambient temperature to the form TA(t) = TA-PATAe
_ iw_ t iw t
or else to the form TA(t) = TA + ATAe o . ATA e " . The first form
W

can be calculated using Eq. (4) for each day; the results for ?A and

ATA are given for each day in Table 1. The term AT can be found by

A
W
guessing at W, and then using (4) on the daily estimates of TA to find
ATA . This process of fitting a sinusoidal model to the observed data
W

is illustrated in Fig. 3.
1u)lt

Sle day

Solar gain is also assumed to be sinusoidal: S(t) =

0 night

We have as input data LASL measurements of solar flux incident omn a
south-facing vertical plane; the measurements were taken each hour. We
first add all the solar gain values for the whole day; this gives an
estimate of daily solar gain. These values are listed in Table 1 and
graphed in Fig. 3.

We use this data to pick test days. We first look for a day
with little change in weather patterns from previous days. From Table 1,
the best choice is apparently February 24. We see this more clearly
from Fig. 4, which graphs solar gain as a function of time for several

days around the 24th of February. As seen in the figure, there have
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been several days of regular sunshine preceding this choice of test
date. (Sunshine is by far the most important driving force for these
buildings as seen below).

For the 24th of February, we fit Sl and W, and find sunrise and
sunset by looking at the hourly data. Using the first and last
observations, 68 Btu/hr—ft2 at 8 a.m. and 36 at 6 p.m. and the peak

value of 252 Btu/hr—ft2 at 1 p.m., we can approximate the data by

setting S1 = 255 Btu/hr—ftz, wy = 0.273 radians/hour, sunrise (t = 0)
at 7 a.m. and sunset (t = td) at 18.52:00 or 6:31 p.m.
Thus for 78/02/24 we set
iw (t-5.763)
255 ¢ 0 <t < 11.52 hrs
S(t) =17 11.52 < t < 24  hrs

where t is measured in hours

Note that the time 5.763 (solar noon) is defined with respect to 7 a.m.
sunrise; the entries in Table 1 have times defined with respect to

midnight. For the same test day, 24 Feb., we set TA = 37.0 +

iw_ (t-8)
16e ° . For both S(t) and TA(t), the fit between real weather

data and modelled weather data is excellent.
Our second experiment is performed on the test day of March 8.
This day was chosen because solar gain data for the previous several

days fits the idealization

(S + AS e ) e day
S(t) =

0 night

where we use daily totals of solar gain to fit the curve.
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The daily solar gain totals are shown in Table 1. If we normalize
the solar gains to their value for 78/02/24 and Fourier-analyze the data

for 78/02/21-78/03/06 using Eq. (4) with w, = 2n/14 days, we find that

iwl(t—2.82 days)
S(t) = (.6403 + .3566 e ) |Sl| where t is measured in days,

with t = 0 at noon on the 21st of February and where all solar gain values
are assumed to take place at noon on their respective days. Extending
this expression to the 7th and 8th of March, we get excellent agreement
as shown in Fig. 3, especially for the last few days. For the test of
March 8, the (non-normalized) expression for solar gain leads to an
estimate of 1702 Btu/day, compared with the observed value of 1753, or a
% error.

To find ATAW, we find best agreement for ww' = 2m/10 days;
applying Eq. (4) to the data for TA for 78/02/27 to 78/03/08 we derive

iw " (£=5.5 days)

TA(t) = 37.5 °F + de " where t = 0 at noon on February 21,
1978. The predicted temperature for March 8 is thus 41.3 °F compared
to the 41.2°F observed. The overall agreement, shown in Fig. 3, is not
as good as for S(t), but is reasonably close. The predictions for TR
will not depend very sensitively on the precise modelling of long-term
fluctuation in TA‘ (Note that there is no reason to want the same value
of W, for the ambient temperature term as for the solar gain term).

We take w, to be time-independent because seasonal changes in

1

sunrise and sunset are not very large over the 3-week span of data.
Thus we always take sunrise to be 7 a.m., sunset to be 6.52 p.m. and

w, to be 0.273 radians/hr.

1

This completes our parameterization of weather; these results

will be used below and also in the Trombe wall modelling discussion.
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3.3.3. Constant-Weather Experiment of 24 February 1978

We use the house and weather parameters described above to model
the predicted response of the test cell. We first use the lumped
parameter model and then the distributed parameter approach. Following

the model predictions, we discuss the agreement with data.

Lumped Parameter Model of the Direct Gain Cell

For the lumped parameter model, we have only one heavy material -
the concrete - rather than 2 as described in Sec. 2.3. We can therefore
simplify the arithmetic somewhat by looking at one dynamic temperature

TC instead of two - T and Tg. Equation (2.10) therefore reads

z

N

T, = S + Lt o+ 25 (6)
R
NR c NR A NR

since the other terms drop out. The two differential equations (2.10a)

simplify to one equation

TC + Ap TC = aZS + ag TA (7)

NC> Ueo

Ao =2 [1 - ==]+ = = a
P

c NR. Ch 3

OLC NS
and a, = A 5
2 c hc NR

We set S = 255 -BEY % 0.7 x 38.2 £t = 6819 Btu/hr e
7
ft“-hr

with wy = 0.273 radians/hour. We then use the building parameters'

where

iwl(t—5.763 hours)

values to find:
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Ap= .0312 hr"l
a, = 8.513 x 107 °F/ (Btu/hr)
az = AP
N_ = 3.316
C
N, = 4.316
N_ = .01103 °F-hr/Btu

We calculate Tw using the solutions to (7) and the boundary conditions
Y = =y +y - -3 . : :
TW(O ) = Tw(24 hrs ),Tw(td ) = Tw(td ); the result is (measured with

respect to the average temperature of 37 °F)

iw (t-13.55) iw, (£-11.10)
66.82 e -2t L 1 89 e © +21.13 e U day
T, = -.0312(t-t ) iw_(t-13.55)
67.63 e + 1.89 e night
Then by (6), we can derive TR:
iw_ (t-9.36) iw, (t-8.316)
s 51.34 ¢ *0%12% L 4146 © +25.13 ¢ * day
T, = .
R -.0312(t-t,) iw_ (t-9.36)
I 51.96 e +4.14 e night

\

This gives temperature elevation (TR—TA) for 78/02/24; the result is
plotted in Fig. 5 for comparison with the data. Room temperature is
the label for the y-axis, although the zero of temperature is taken
as TA to allow the reader to see relative error.

The LASL measurement of room temperature was perfofmed by

enclosing a thermocouple inside a plastic sphere, so their room

temperature is really some average of room temperature and mean radiant
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temperature. We derive a rough estimate of one model's mean radiant
temperature below; the result is that mean radiant temperature (MRT)
is only a few degrees F different from room air temperature, and is

always larger than room temperature.

Mean radiant temperature of a point in a room is the temperature
of the solid surfaces visible from that point, averaged over solid
angle. Averaging over solid angle is complicated; as an approximation
we average over surface area. We derive expressions for surface
temperatures of the concrete, the styrofoam, and the glazing as follows.

For the concrete surface temperature Eq. (2.1) relates concrete
surface temperature to concrete temperature, room temperature, and
solar gain. Since all three quantities are known, we can easily solve
for concrete surface temperature. The result is

63.77 o 012t 4 2. 02 eiwoct_12'15)+ 24.30 eiml(t_g'Sl) day

cs —.0312(t—td) iwo(t-12.15)
64.55 e + 2.02 e night

For the styrofoam surface temperature, we note that for any
surface, Eq. (2.13) relates surface temperature to its driving forces

as follows:

T, = (n Ty + GS) Ry + T, R

A 2

Styrofoam is a quick-heat-transfer material in our model, so we

take the limiting form of Ry for a pure conductance: Ry = %\ Also,

the styrofoam is a good insulator, so R, = o, Thus



-131-

RS 2
Ts = T,* 5~ ©F since h = 1 Btu/ft -degF-hr,
styro R
TS = T_ + GR S
styro

Finally, the glass temperature is determined by looking at the
glazing as comsisting of two resistances in series - the outside
resistance from the surface and the inside resistance. The inside
resistance, accounting for radiant heat transfers to the other walls
as well as convection to the air, should look like Rin.E 1/h = 1/(1.5
Btu/hr- F—ftz). The inside and outside resistances add to the
inverse of the U-value, or 1/0.55. Then the glass surface temperature
is given by

R -R.
total in
T = — = (T, - T,) +T
gs Rtotal R A A

IR

0.633 (T,-T,) + T,

0.633 TR-+O.367 TA

We can now evaluate mean radiant temperature as follows.

MRT =

1
(A T + A T +A_ T )
Astyro + AC+Agl styro Sstyro c "cs gl “gs

where the A's represent areas.
Using the previous numerical results, we find that

iw; (£-5.763)

MRT = 0.500 T, +0.436 T__+ 0.055 AT, + 4.447 e ,
or . .
53.94 ¢ " 0312t 4 3 60 elwo(t_9'65)+ 26.40 o 1 (-850 day
MRT = -.0312(t-t ) iw (t-9.65)

‘ 54.59 e +3.60e O night
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These results are graphed in Fig. 5.

We note that MRT is 2° F warmer than room temperature at sunrise,
less than 3° F warmer at its peak temperature, and 2-1/2° F warmer at
midnight, or about 5% warmer on the average.

Looking at Fig. 5, we see generally excellent agreement between
predicted room temperature and measurements; the agreement with mean
radiant temperature is also reasonably good. The largest disagreement
occurs during the early afternoon, when the model predicts temperatures
3-7° warmer than actually recorded. This error — still 10% or less —
can be explained in two ways.

First, the wind speed increased during this period, increasing
the U-value of the glazing and lowering room temperatures. Our model
has a fixed U-value for the glass. Second, and perhaps more important,
the weather was not precisely constant prior to the 24th of February;
both solar gain and, to a larger extent ambient temperature, were slowly
increasing. Including these effects would have produced lower predicted
temperature, as shown by the next experiment.

Before we conclude the discussion of this experiment, we will
briefly discuss the sensitivity to errors in assumptions. There are
three assumptions we make that are not well-supported by data: net
transmissivity of the glass of 70%; radiation balance parameters o = 0.8

and o, = 0.2; and film coefficient hC =1 Btu/ftz—deg F-hr. We discuss

R
next the sensitivity to varying the assumptions.
First, the sensitivity to solar transmission estimates is that,

to good approximation, a 1% change is net transmissivity will produce

a 1% change in temperature elevation at each hour. This occurs
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because the response to ambient temperature fluctuations is relatively
small.

To see the sensitivity to correct evaluation of the a's, we try
another set of assumptions. One reasonable assumption is that even
more of the light is absorbed on the concrete, since shaded concrete
subtends most of the solid angle seen by the illuminated concrete.
Suppose we set ac=:0_9 and uR::O.l. Then we can calculate Tp as we
did before; the result is

] iw_(£-9.36) iw, (t-8.76)
52.39 ¢ 0312t L 4146 © + 22,566 1 day

—.OSlZ(t—td) iwo(t-9.36)
53.02 e +4.14 e night

Neither this result nor the calculation for mean radiant
temperature differs by more than a degree or two from the previous
calculation; so we conclude that the result is insensitive to small
errors in determining the a's.

We will later check the sensitivity to errors in hc' We assume
for this test that hC = 1.5 Btu/ftz—deg F-hr instead of 1; the former
being the usual combined film coefficient. This test also shows small
sensitivity to the change. The calculation is performed later in

conjunction with the distributed parameter model.

3.3.4 Distributed Parameter Model of the Direct Gain Cell

For the distributed parameter (continuum) model, the calculations
are relatively straightforward applications of the results of section 2.4.

Since the concrete walls are within the domain of the thin-wall
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approximation, we expect excellent agreement between the lumped and
distributed models; this is demonstrated below.

The distributed parameter solution is obtained from Eq. (2.15)
with the building response functions A, B, and C given by (2.14) and
(2.14a). We evaluate A, B, and C using ﬁq = 32,4 Btu/deg F-hr and
using the materials properties pcp = 18 Btu/°F—ft3 and K = .80 Btu/ft-
deg F-hr to derive response functions for the concrete.

The response functions Ry and R, for the concrete are listed in
Table 2. We anticipate the needs of our varying-weather experiment
and evaluate the response functions for low frequencies as well as

for multiples of W, - We next Fourier-analyze S(t) in terms of the

0 iwont
d: S(t) = ]Sl| > d e . We find that

n=o0

d_ = .3053

e}

d; = .4769 ¢71 2051

d, = .2261 o™ 0101

dg = .0157 *1-729%1

4, = 0451 o"2:890i

d; = .0086 ¢*1-5%7

We next use (2.14) to calculate A, B, and C for all frequencies

of interest. We will consider the frequencies 0, W, > w&, w , 2w, 3w_, and
o} o}

0
4m0 and truncate the series after that due to d5 being much smaller
than the other coefficients. The results are given in Table 3.

We evaluate TR(t) using Table 3 for A, B, and C and the weather

parameterizations discussed previously, and find that
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iwo(t—8.9 hrs) Ziwo(t—6.793 hrs)
TR(t) = 48.98 + 15.60 e + 4,188 e +

Simo(t + 1.68 hrs) 4imo(t—3.137 hrs)
0.266 e + 0.694 e

The first term is referred to ambient average temperature (37° F)
for 78/02/24; so the Fahrenheit temperature would be 37° higher. This
result is graphed in Fig. 5; it is seen to be almost identical to the
lumped parameter result, but with slightly better agreement with the
data during the early morning hours.

We next repeat the calculation for hC = 1.5 Btu/ftz—deg F-hr
to check the sensitivity to hc' We find that

iw (t-9.23 hrs) Ziwo(t—6.96 hrs)

T, = 49.55 + 14.88 e ° + 3.96 e +

We truncate after two terms because it is evident that there will be
very little change in the results. The insensitivity to hc probably

is due to two competing effects cancelling. As h is increased, more
of the heat absorbed on the concrete surface is conducted directly into
the room, tending to increase diurnal fluctuations in temperature.

But in addition, the (unheated) room is then more tightly coupled to
the concrete walls, which damps fluctuations. Over this particular

range of hc , these effects cancel.

3.3.5 'Varying Weather Experiment, 8 March 1978, Direct Gain Cell

We apply the results of our model to predict the response of the
test cell on March 8, a day for which the previous two weeks of
weather can be accurately modelled as a sinusoidal fluctuation added

to a constant term, as shown in Fig, 3. This situation can most
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conveniently be modelled using the distributed parameter approach.

The weather data are:

iw  (t-2.82 days)

S = (.6403 + .3566 ¢ ) 8,
iwd (t-5.5 days)
and T, =37.5+ 4 e
A
where t = 0 corresponds to noon and 21 February 1978
iwl(t—5.763 hrs)
6819 e day
S1 =
0 night
w, = 2w/14 days
ww' = 27/10 days

We use (2.16) to derive TR(t);in order to evaluate this expression
we need to compute the building response functions A(w) and B(w) for

W=, and A(w) and C(w) for w = ww'. We find that

A(w) = 46.83 ¢ 012 B(w) = .9396 ¢ 1112

47461

Alw,') = 51.93 e Clw,') = 40.03 ¢ 000

We evaluate (2.16) next; we first display the general equation

and then derive the numerical results
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4
B(w ) iw t iw t B(nw ) iw nt
_WB(O) w w Q w Z o d 0
TR(t)—S WdO+ASWWdOe +<S+ASwe ><n:1 -—-——-—a——A(nwo) ne /
(8)
Y
_ Clw ) iwwt iw t
+ T, + AT ¥ e + AT, e
A A 1 A
w Alw )
w
The first term is just .6403 times the old steady-state term of
48.98°F. For the second term, ASW dO is just .3566 times the old steady-
state solar heat gain. The sum in the third term is the same sum as in
the daily solution, but multiplied by a time-varying factor. This
factor, evaluated at noon on March 8, when t = 15 days, is equal to
.8844., The rest of the terms are relatively straightforward to
understand.
Numerically (8) is equivalent to:

iww(t—3.92 days) iwo(t—8.72 hrs)
TR(t)==30.884-14.90 e +110.35 ¢

2imo(t—6.793 hrs)
+ 3.70 e

3iw_(t+1.68 hrs) 4iw_(t-3.14 hrs) i (t-6.33 days)
+ .24 e + .61 e + 37.5+3.08¢e

iwo(t—9.65 hrs)
+ 3.336 e (9)

Equation (9) follows the form of (8) term-for-term. A more compact
version of (9) would combine the two terms at frequency Wy into one
term. It would also evaluate the terms at frequencies W, and wd

numerically. Note that such an evaluation is not constant over the



-138-

1
course of a day. However, since W, and w, << w,, we can evaluate their

terms at noon, midnight the night before, and midnight the night after
and interpolate linearly for hours in between. So we can write

70.2 iwo(t—8.95 hrs) Ziwo(t—6.79 hrs)
TR(t)= 74 + 13.61 e + 3.7 e +

78.0

3iw (t+1.68 hrs) + .61 e
0
+ .24 e

(W

4iw_(t-3.14 hrs)

midnight
for noon

midnight

This result is plotted in Fig. 6. For comparison, we plot the
measured data and a calculation which ignored weather variations and
assumed that all past history had the same weather as March 8. (That
is, we used (2.15) for TR(t) instead of (2.16)).

Several features are noteworthy in Fig. 6. First, the agreement
between model and data is better than for Feb. 24. This is to be
expected, since more detailed weather information was used for this
prediction. Use of a mean-radiant temperature calculation would
probably result in even better agreement, since measured room temperature
would almost always lie between predicted room air temperature and
predicted mean radiant temperature.

The difference between the curve labelled 'no weather'" in Fig. 6

and the model curve is the (calculated) response of the building to
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long-term weather fluctuations. This response is fairly large: the
test cell has a long time-constant and stores significant heat over
two-week cycles. The model is apparently tracking the dynamic response
to both daily and multi-week cycles. Response to long-term weather
variations is an important feature of good passive solar performance;
if a building can store heat from a week or more before a severely
cloudy spell, it has a better chance of going through a design cold

day without requiring artifical heat input.

3.3.6 2-1/2-week Historic¢ Weather Experiment

In this experiment we attempt to solve for the lumped parameter
model's response to historic weather. By historic weather, we mean
the observed random day-to-day fluctuations in weather conditions as
opposed to "typical" weather conditions. Historic weather is not
periodic and so the Fourier transformation of the continuum model
won't work; so we are limited to the lumped parameter model.

We treat this modelling exercise as an initial conditions
problem. That is, we begin with the solution for 24 February 1978.

We then solve the equations for the pre-dawn period of 25 February,
using the weather conditions for that date (shown in Table 1) and using
the initial condition that Tc’ the concrete mass temperature, does

not change discontinuously. We then proceed with solutions for each
period of each successive day (pre-dawn, daylight, past-sunset),
matching the initial value of T. to the previous period's final value
of Tc'

To simplify the algebra, we assume that ambient temperature

can be modelled as an average temperature TA plus a sinusoidal term
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iw t
ATA e ° for each day; their values are shown in Table 1. We assume

that solar gain is sinusoidal and of the form

S, e day

0 night

for each day. We derive S, by scaling the old S1 (6819 Btu/hr) by the
ratio of solar gain for that day (in Table 1) to solar gain for the
24th of February (1924 Btu/day-ftz).

Having derived TC for each period of each day, we obtain the
room temperature TR from (6). The results are given in Tables 4ab and
plotted in Fig. 7. As shown in the figure, agreement is generally
good; the model is always within 8°F of the data except for some spikes
during the day (when actual solar gain was, at times, much larger than
the sinusoidal model). Furthermore, the largest errors occur on days
in which data was missing for one or more daylight hours (indicated
by dotted lines on the graph). When data is missing, we can't accurately
sum the daily solar gain input. This always occurs on partly cloudy days,
when the missing data could lie anywhere from full sunlight to deep
overcast. Thus the solar gain is modelled inaccurately, perhaps
accounting for the error.

Several things are noteworthy about Fig. 7. First, although
TC cannot change discontinuously by definition, TR can and frequently
does at midnight (when assumed weather conditions change
discontinuously). But in Fig. 7, all the discontinuities are

small and do not affect the general shape of the curves. Also, we
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see in Fig. 7 that the model recovers from errors (perhaps caused by
missing data) and tracks the measurements as well on the 18th day as
on the eighth day. This stability is reassuring, particularly in
light of the large amount of long-term heat storage demonstrated in
Fig., 6.

This exercise demonstrates the flexibility of the lumped
parameter model in describing conditions which would be impossible
to model using the distributed parameter model. The two models are
complementary in many ways; one may be more useful than another in

solving any particular problem (or they may both work or both fail).
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3.4 Experiments on the LASL Trombe Wall Cell

This section describes the comparisons between predicted room
temperature for the Trombe wall cell and recorded temperatures. Its
organization is similar to that of the previous section: we begin
with a description of the test cell and then describe two experimental
comparisons. Both are performed using the distributed parameter model;
the lumped model breaks down for a non-thermocirculating Trombe wall.

Comparisons are made for the same days as in the direct gain
cell experiments, so we use the weather formulations of Sec. 3.3.2.
Results are summarized in Figs. 9 and 10 . As shown in the figures,

we find excellent agreement between the model and the data.

3.4.1 Trombe Wall Cell Description

The LASL Trombe wall cell is an insulated box about the same
size as the direct gain cell. Immediately behind the glass collector
window is a thick (15-5/8" or 39.7 cm) concrete wall painted black.

As illustrated in Fig. 8, the air channel between the wall and the
glazing is sealed to prevent air leakage between the channel and the
room air.

The room behind the Trombe wall consists of styrofoam-and-wood-
frame walls of similar construction to those in the direct gain cell.
The room air can circulate into a small box-shaped space above the
Trombe wall, as shown in the figure, but it can't easily exchange heat

with the channel air.
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The response of the Trombe cell is governed by Eq. (A2.4-39).
Ordinarily, we would model the cell as consisting of one heavy element -
the Trombe wall - and would lump the effects of the envelope walls into
ﬁq , the quick heat transfer coefficient. But for the LASL Trombe cell,
the envelope walls are the only significant channel for heat loss from
the cell, so we must model them as massive envelope walls and calculate

response functions for them. The form of (A2.4-39) which we use in

this section can therefore be written as:

~on - 1 Uerlre
Tp}Uq*he (1 -heRyed *Ucpil-3 <UCR thre [Bor T Rin >

U_h
o ! 1 cR'Tc
* Urp <1 - UTR<R1T Y, T R2T>> %

Urg

: Ryt R2T> (10)
cR UCA thUcA ( UthTc >
= + P R, +——R

5 5 2T 1T

[end2

where the subscript 'T' refers to Trombe wall, and where the parameters
for the Trombe wall are defined in Fig. 2.7 and in Appendix 2.3. Note
that since Trombe walls transmit solar heat gain through the wall,
the R2 function enters into B(w) and A(w).

We evaluate the parameters needed for Eq. (10) next. To begin

”~

with, Uq consists only of infiltration losses. The volume of the
cell consists of the volume of the main room (5.25' x 5.75' % 10.08'
according to the author's measurements as displayed in Fig. 8) plus

the volume of the small area over the Trombe wall (5.25' x 0.58' x 1.63")
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floor: 5.75' x 5.25' = 30.19 ft2
side wall: 5.75' x 10.08' = 57.96 ft°
ceiling: 7.39' x 5.25' = 38.77 ft2
back wall: 5.25' x10.08' = 52.92 ft2
walls above, (y ¢z1 . 5 251 x0.58' = 3.99 f£t2
air channel ~
TOTAL 183.8 ft?

So Ae = 183.8 ftz. We assume heE].Btu/deg F-ftz—hr because the
envelope walls see mostly other walls.

We next calculate solar transmission. The transparent area of
the glazing is 8.58' x 4.58'. The transmissivity of the glass is
assumed to be 75%; the amount of light reflected back out of the glass
is apparently somewhat less than for the direct gain cell; we assume
72% for net transmissivity. Thus the solar gain is for 24 February

when the peak solar gain is 255 Btu/hr—ft2 is 7215 Btu/hr. We take

O, =
T 1.00.

Finally, we list some materials properties necessary in
calculating response functions. For the Trombe wall, K = .80 Btu/hr-deg-
ft, pcP = 18 Btu/oF—ftS, and d = 1.3021 ft. For the envelope walls,
we have two 2-layer walls in parallel. Both have styrofoam as an

inside layer. Using ASHRAE handbook values, we find that for styrofoam,

I}

o} 2.2 1bs/ft3,cp = 0.29 Btu/lb, K= 0.01667 Btu/oF-hr—ft,and

d = 1/12 ft.

The second (outside) layer is fiberglas in one case (pcp = 0.143
Btu/ F-£t>, K =0.0238 Btu/ F-ft-hr, d = 3.5/12 £t) and wood

(pcp =9 Btu/oF—ftS, K= .068 Btu/DF—ft—hr, d = 4.5/12 ft) in the
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for a total of 309.2 ftS. At 1/4 air change per hour, this represents
a heat loss of 1.08 Btu/deg F-hr so ﬁq = 1.08 Btu/oF—hr.

The Trombe wall itself has an area AT = 46.83 ft2, based on
dimensions of 8.92 ft height and 5.25 ft width. The film coefficient
hTC from the Trombe wall surface to the channel air is taken to be
2.0 Btu/ftz—deg F-hr, slightly larger than usual due to the high
surface temperatures (> 140°F) attained by the front Trombe wall
surface, but not exceptionally large since free convection is impossible
in the sealed air channel. The exact value of th is not important for
a non-circulating wall; what is important is that hTC and UCA (the heat
transfer coefficient from channel to outside) add as series conductances
to the U-value of 0.55 Btu/ftz—oF—hr for a double glazed window. This
requires UC =0.7586. Combining these heat transfer coefficients with

A

the wall area, we get ﬂTC = 93.66 Btu/ F-hr and ﬁcA = 35.53 Btu/ F-hr.

~

The coupling between channel air and room air, U while small,

cR ’
is not exactly zero, even for a noncirculating wall. Warm air can
conduct through the 2" styrofoam atop the channel into the room; the
magnitude of this conductance is given by the area: 5.25 ft x .333 ft
multiplied by the U-value for styrofoam (R-10) plus two film coefficients
(R-2/3 each). The U-value is .0882 Btu/ftZ-°F-hr, so U, = -1544
Btu/°F-hr. Thus U, = 25.84 Btu/°F-hr and I = 129.34 Btu/ F-hr.

Finally the coupling between the back of the Trombe wall and the

room, U, is just a film coefficient of 1.5 Btu/ft2—°F—hr, thus

TR’

UTR = 70.245 Btu/ F-hr.

The envelope walls consist of 1 inch styrofoam backed by

insulated wood framing. The wall areas are:
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other. We calculate the response functions for two-layer walls using
(A2.4-50). The total response function is the stud area fraction
(0.2) times the styrofoam-plus-studs response functions plus the
insulated cavity fraction (0.8) times the styrofoam-plus—-insulation
response functions. The result for the total wall is given in Table 5.
We next calculate response functions for the Trombe wall, using
the parameters given above. The response functions RlT’ RZT’ and
RiT are tabulated in Table 6.
This completes the computation of house parameters. The

parameters, along with the weather description of Sec. 3.3.2, are

used in the following two sections for simulation work.

3.4.2. Experimental Results for 24 February 1978

The previous sections provide the background needed to model
the Trombe wall for 24 February. As we have noted, this date was
chosen for time-independence of daily weather patterns, as illustrated
in Fig. 4. We thus model the cell using only a steady-state term
and harmonics of one cycle per day. As we will show, the building
response functions decrease very rapidly with increasing w , so only
3 terms are needed in the series.

We next calculate the building response functions A(w), B(w),
and C(w) using the weather parameters of Sec. 3.3.2 and the house
parameters of the previous section to evaluate Eq. (10). The results
are given in Table 7. Anticipating the needs of the next experiment,
we also evaluate A, B, and C for U and ww'. Missing entries in the

table are omitted because they are not needed in the calculation.
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For example, we omit C(Zwo) because there is no input of temperature
variation at frequency 2wo.

The room temperature response is given by (2.15), which is
repeated below. Recall that|81l= 7215 Btu/hr and the d's are given
in Sec. 3.3.3.

2 B(nw)  imt) _ C )

- B(o) o .
1811145 Koy :E: A(nw_) 950 (" Ta " ng;y‘ATA ettt ()

We evaluate (11) term-by-term below, and point out some

interesting effects:

. dw t . 2iw t
Ty = 41.08° F + 4.973 "33 04 go5 o700 o0

1wt ‘
+ 37°F + 2.458 ¢ 2-84%1 0 (12)

We first note that the response to sunlight is very heavily damped by
passage through the Trombe wall; the daily fluctuations in temperature
due to solar input are only =* SOF. In addition, they are phase
delayed by about 0.9 ﬁ . or almost half a day. Thus even though
the solar gain peaks'at 12:30 p.m. and the ambient temperature peaks at
3 p.m., the effects of sunlight are felt six hours later than the
effects of temperature.

This last effect illustrates why we had to model the envelope
walls as massive objects. Comparing the last temn(ﬁ(w :

B(w,) Alw )
second term KTZTT-dl S1 , we see that they are separated in phase by
. 0

to the

1/4 cycle. This means that if the phase difference were to increase,

these two terms would begin to interfere with each other. In other
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words, if the envelope walls had really been sources of quick heat loss,
C(mo) would have been larger and would have had smaller phase lag, and the
last term of (12) would have interfered destructively with the second
term. So less insulation would lead to lower room temperature
fluctuations, not higher, (at least until the last term dominated over
the second (solar) term).

This discussion points up an interesting design possibility of
Trombe wall buildings, which might not be apparent in a computer-based
analysis. We can apparently design the Trombe wall and other elements
to reduce temperature fluctuations by means of destructive interference
between different waves at frequency W, - We can produce not only
interference between the Trombe-wall transmitted solar wave and the
ambient-temperature-response wave, we can also add in a thermocirculation
term to the Trombe wall. 1In (10) there are several terms of the form

U.h U h

CRTc p 4R, . For this experiment, R,. >> SR Te g

y '
5 1T 2T 3 1T° SO the R, term's

1T
effects are small; nevertheless the whole term is always smaller than
RZT’ not larger, because R2T is almost completely out of phase with

R1T at frequency Wy - Thus adding varying amounts of thermocirculation
(increasing UCR) could decrease the fluctuations in room temperature

for this cell. The results of Eq. (12) can be condensed and written as

iwo(t—14.8 hours) Ziwo(t—l.OS hours)

Ty = 78.08° F + 5.76 e +0.7 e

(13)

This result is plotted in Fig. 9 for comparison with the data; as we can

see, the agreement is excellent.
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B(nw )
Note the very fast convergence of the series jE:dn KTHB?T in
Egs. (12) and (13). This convergence is due to the fact that
B(nwo) ~ R2T , which decreases very rapidly with w , coupled with
the slower l/w2 dependence of the dn' For this reason, we can
completely ignore harmonics with n = 3; even the 2nd harmonic is
buried in the noise of the calculation.

Finally, we can check the conductivity measurement of LASL
concrete in a very approximate way using the results derived above.
We find that they are consistent with the LASL measurement of
.80 Btu/oF—hr-ft. Our check consists of calculating the steady-state
heat transfer from the Trombe wall into the room and comparing this
with the steady-state heat lossesbfrom the room. The former is
estimated by calculating UTAT(T' —T}S) where T,, and TA

41 41

are the front and back Trombe wall surface temperature at mid-height,

5

averaged over the day (see Sec. 3.2 for values), UT is the Trombe wall
U-value of KT/dT = 0.6144 Btu/ftz-deg F-hr. This should overestimate
heat transfers, since the temperature of the wall is not uniform and
the bottom is much colder than the middle or the top. (That is, the
average back-surface temperatures for February 24 are: top: 88.79o F;
middle: 86.94°F; bottom: 78.50°F. The middle temperature is thus

somewhat hotter than the average temperature). The result is a heat

-
wW=0

(TR - TA). This is numerically equal to 12.33 Btu/ F-hr x 41.08°F or

transfer to the room of 615 Btu/hr.

The losses from the room are given by Uq-{-he (1-—heR1e
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62.7
. iwo(t—14.92 hrs) Ziwo (t - 1.05 hrs)
TR(t) =4¢66.2 F + 5.14 e + .61 e

69.6 (15)

where the first term includes the effects of weather varying terms
previous midnight

evaluated at noon March 8 . Values for intermediate
following midnight

times can be approximated by linear interpolation. In comparing with

(8), we are making the assumption that the second and fifth terms of (8)

must be evaluated for each hour of each day (e.g. t = 15 days + 2 hours)

iw t

W in the third term can be evaluated for

while the expression ASW e
t = noon on March 8 and held constant throughout the day. The good

agreement in Figs. 10 and 6 seems to validate this approximation.
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506.5 Btu/hr. This estimate is about 20% different than the previous
estimate, and the error is in the expected direction. So we see that
the LASL conductivity estimate is self-consistent to better than 20%

accuracy.

3.4.%3. Weather Variations: Experimental Results for 8 March 1978

We next attempt to model the effects of long-term weather
variations on the Trombe wall cell by looking at room temperature
response on March 8. As we have described, March 8 was chosen because
its weather patterns can be accurately described by a sinusoidally
modulated solar gain amplitude with modulation frequency W, = 2n/14 days
and a sinusoidally varying average temperature whose frequency
ww' = 271/10 days. This fit is illustrated in Fig. 3.

The mathematics are analogous to those derived for the direct
gain cell in Sec. 3.3.5. The equations for S and TA are identical,
except that ISl‘ = 7215 Btu/hr for the Trombe cell instead of 6819 Btu/hr
for the direct gain cell. The room temperature response is still
described by (8), which is repeated below, only the building response

functions A(w), B(w), and C(w) are taken from Table 7 for the Trombe

wall cell. Equation 8 says:

. . 2 .
_ B(w, ) iwt ,_ iw t B(nw ) inw t
_5 B(0) W W < W Tt o
TR(t)— S A(O) d0+ASw Alw ) do © * S+ASwe >:£: Alnw ) dne
W n=1 o]
— Clw") iw t CC(w) iw t
+ T, + A il WoOLAT, e ©

T ———— T
A AW A(ww') A A(wo)
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We use Table 7 to evaluate this term-by-term, as follows:

. iww(t—4.365 days) -i4.313 iw_t
Tp(t) = 26.30°F + 12.19 e + 4.398 e e °
2iw (t-1.05 hrs) ] iw '(t-6.52 days)
+ 0.615 e + 37.5 F+2.96 e
-i2.897 1wt
+ 2.072 e e (14)

As in the daily solution, the solar response term at frequency W, is
out of phase by 1/4 cycle with the ambient temperature response at
that frequency.

We note that in (14), the time t is measured in days in the
second and sixth terms; that at noon on March 8 t = 15.0 days
(i.e. t = 0 at noon on February 21).

What is the effect of long-term weather storage on the system?
We note several effects. First, on the peak day of the cycle, the
temperature elevation due to solar gain is 26.30 + 12.19°F, or 38.49°F_
This is 2-1/2 degrees cooler than the steady-state result for
24 February, indicating that the storage of "coolth'" is considerable.
This is also evident in the reduced amplitude of the response to
ambient temperature; ATAW is 4°F, but the room temperature response to
it is only 3°F.

Also, note the phase lag in the second term of (14). The
response to weather-varying solar amplitude is delayed 1-1/2 days.
This results in the second term contributing almost nothing to room
temperature on March 8, but if there were no phase lag the contribution
from a 12°F amplitude would have been 8.3 F (that is, the room would

have been about 8  warmer).
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To look at the effect of weather variations more precisely, we
can model the cell's response as if all previous days had the same
weather as March 8. This would involve using (11), evaluated with the

values of |S,| and TA for March 8. The results of this exercise are

|
shown in Fig. 10 labelled as 'mo weather' and are contrasted to the
results of (14) ("model') and the LASL measured data.

As seen in Fig. (10), the prediction including the effects of
weather agrees very well with the data, while the no-weather curve
is significantly different. The difference between the calculated
curves with and without weather variation is a measure of the cell's
response at low frequencies. It is larger than was the case for the
direct gain cell, due to the greater thickness of the Trombe wall.

This can be seen by looking at B(ww) in Table 7 and comparing with

Ror in Table 6. The two functions are approximately equal. Half the
B(w. )

W
A(ww)

One can also note from comparing B(w) in the direct gain and

phase delay in is the lag present in R

27"

Trombe wall models that B(0) can be taken to represent the collection
efficiency of the Trombe wall. Note from (2.14) that B is always less
than 1, since each term thl. < 1. For the Trombe wall cell, this
efficiency is 44%. It is lo% because of the large losses through the
collector glazing from the hot front surface of the wall. For
comparison, if the collector window had been triple-glazed, with U-value
of 0.35 Btu/ftz—deg F-hr for the glass, the collector efficiency B(0)

would have been 55%.

Equation (14) can also be written in more condensed form as
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3.5 The Sonoma House Model

In this section we discuss the comparison between the lumped
parameter model and some rough measurements made on a small 1-room
passive solar demonstration house built by Barbara Greene at Sonoma
State College in Cotati, California in 1975, and since demolished.

We model most of the building from architectural data and materials
properties; however, one parameter is adjusted within a plausibility
range to obtain the best fit.

The section of the house is shown in Fig. 11; it covered 440 ft2
(+115 ft2 under the collector). Insulation was about R-11 on walls
and floor, R-22 on ceiling; there were also 2-15 ft2 double-glazed
windows on the west wall.

The thermal storage system consisted of 407 1l-gallon milk bottles
painted black and filled with water, mounted on a frame of 2 x 6 studs
backed by plywood. The assembly was facing 10° west of South and
inclined with normal 60° from vertical. A few inches above the collector
assembly was a single glazed window, 220 ft2 in gross area. At night it
was covered by 1%" of insulating polyurethane foam R ~ 10; during the
day, the back of the cover was reflective and increased the solar
collection. Air could circulate through the narrow (~ 1") channel
between the collector window and the storage assembly.

The equations of Sec. 2.3 describe the response of a house to
sinusoidal solar gain and periodic weather, so to compare the
predictions with experiment, one must find a day with weather patterns

similar to those of preceding days. Unfortunately, the data collection
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effort at Sonoma was spotty. Hourly values of T, are generally

R

available, but T, was obtained from the campus weather station, which

A
was frequently out of order. The calculations also require knowledge
of when the collector window cover was opened and closed; this data

was collected about half the time, and is sometimes incorrect (e.g. the
data show that the cover was not opened on a given day, yet TR
increases as quickly as on sunny days when the collector was used).

The net result is that the only day for which all the data werer
available was December 13, 1975. Fortunately, the condition of time-
independent weather was satisfiedvto good approximation on this date.
Figure 12 graphs the results TR - (TA) vs time; the solid line gives
the data, the flatter dotted line gives the model predictions. The
more curved dotted line gives the results of an extension of the model
which accounts in an approximate way for the solar gain through the
small west-facing windows. West window solar gain was assumed to be
sinusoidal in time and centered at 2:30 p.m. To the extent that the
real function was skewed towards later time, the house response should
also be delayed further. The model also calculates the collector
("floor') temperature Tf, which was measured in a few spot checks.
Measurements put the afternoon collector temperature Tf in the range
of 125-140°F, which is consistent with the calculation.

The predictions agree reasonably well with the data, considering
the amount of judgment required in evaluating the parameters of a
house which was demolished before it could be seen by the authors,

and considering the uncertainties in the weather data.

We next describe the details of the modelling.
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This building might most properly be modelled using the Trombe
wall equations. However, since we were unable to make any measurements
on the building, it would have been difficult to evaluate all the
conductances (ﬁwc’ Gwo’ acA’ GCR) used in the model. We further felt
that the limited data accuracy did not warrant the extra algebraic
complication, so we used the direct gain model. We thus assume that
there is a direct path for heat loss from the receiver heat capacity
to the ambient temperature reservoir through the glazing, which we
call ﬁo' We also assume a direct path from the receiver surface to
the room, which is described by the "film coefficient" ﬁ.

We use "floor'" subscripts to describe the receiver. The most
difficult parameter to evaluate will then be ﬁf, the coupling between
"floor" (receiver) surface and the room. Since the coupling is by
natural convection through a narrow chamnel (between the bottles and
the window glazing), the resistance (both mechanical resistance and
thermal resistance) should be relatively high. The convective part of
the usual hf is about 1/2 Btu/hr—deg—ftz; for this case we expect a
range of .1-1/2, corresponding to 22 < ﬁf < 110; we will fit this
empirically.

The other floor parameters, ﬁfi’ ﬁfo’ and Cf are inherently
lumped, and thus relatively easy to calculate. Since the heat transfer

into the bottles involves free convection of water, U.. is large;

fi

around 50-60 Btu/hr—ftz—deg. Thus U,, ~ 12,000 for 220 ftz.

fi
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~

§) is the loss rate from the collector; it is the U value of

fo

the collector glazing. This ranges from about 1.1 for still air inside

to about 2 for quickly circulating inside air, so Q&xlg 220 £t2 x (1.1-2) =

230 - 440. Discussions with people at Cal State suggest the higher
part of the range is more believable, since a jet of fast-moving air blew
past the receiver and into the room when the sun was shining. So we

take Ufod= 400 Btu/°F-hr.

We estimate the collector heat capacity Cf as the sum of the con-

tributions of the water and of the wood frame. The water has a heat

capacity of 407 gal x 8.32aibs x 1 Bt¥édeg = 3390 Btu/deg.

The frame consists of 2 x 6 studs 12" apart in a 240 gross square

foot assembly. We use the entire heat capacity, since the lumped
parameters for 1" half-thickness of interior wood are very nearly the

steady-state parameters. Heat capacity of the frame is

6"  1-5/8" of stud % 9 Btu  _ 146 Btu

2X
240 ft 12" 12" of space 309 °F

Thus, Cf = 3390 + 146 = 3535 Btu/°F.

To evaluate wall parameters, we use a thickness of 6" corresponding
to an average wood thickness for ceiling and floor joints and wall
studs. Thus for pc = 9 Btu/ft>-°F and K = 0.068 Btu/ft-°F-hr, we

2.164 Btu/ft?-°F. U is
wo

1t

- 2_o
have Uwi = 0.564 Btu/ft"-°F-hr, Cw

-1 -1
normally ch = = i
y chosen such that UWi + UWO Uw where Uw Kw/d in order

to assure the correct steady-state heat loss. However, in this

problem, we use ''wall" subscripts to describe both walls and some

building contents, so that to get the correct steady state heat loss
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~o-1 ~o-1 -1 > - :
we need Uwi, + Uwo = (UW AW) . UWi will involve some

contributions from the house contents; so we hold off the evaluation

~

of Uwo'

We calculate square feet of wood as follows: The exterior framing -
was about 20% wood. (25% is typical but this building had few windows
and doors, and used 24" centers for the framing). So wood area in walls
is .20 x 450 ft2 = 90 ft? These were 828 ft2 of floor and ceiling, with
about 13% of their area in wood, giving .13 * 828 = 108 ft2 of wood area
in floor and ceiling.

Since the room was relatively uncluttered, and has no partition
walls, heat transfer from the walls to the air is inhibited. Radiative
heat transfer would be greatly reduced, since all the inside wall
surfaces are roughly the same temperature, and since air is transparent

to heat radiation.. Therefore we take h =~ 1 Btu/ftz—deg—hr. The wall

contributions to the lumped parameters are-:

h =1.0 x 198 ft2 = 198 Btu/deg F-hr

w
U . = .566 x 198 £t2 = 112 Btu/deg F-hr
C, = 2.16 x 198 ft” = 428 Btu/deg F

In addition, there was about 700 1lbs of building materials,
. . 3
typically 2" thick wood, lying around the room. With p = 27 lbs/ft

this results in 156 ft2 of wood surface.
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The lumped parameters for interior walls 2" thick (that is,

assuming that the '"wall'' extends 2" below the surface and no heat flow
. Btu
occurs out the other side) are U. = .910 ———~———; U_ =0
i 2
ft”-deg-hr

2

C =1.356 Btu/ftz—deg. Thus, adding the contributions for 156 ft2

of lumber to the wall stud contribution, we get

hw = 198 + (156 ft2 x 1 Btu 2) = 354 Btu/deg F-hr
hr-deg F-ft
U, = 112 + <156 £t? x 91 —BtU 2) - 254 Btu/deg F-hr
hr-deg F-ft
c, =428 + (156 ££2 x 1,356 —btY ) = 657 Btu/deg F
deg F-ft

We take U  such that U . and U add in series to the steady-
wo wi wo

K
state U-value of 198 ft2 X UW; where Uw = 7¥~= .136 Btu/ft2~deg F-hr.

Thus awo = 30.1 Btu/deg F-hr.

~

Uq is estimated using the steady-state U-values for the insulated
spaces (cavities) in the envelope, the non-collector window, and air
exchange.

The U-value for R-11 walls with no interior sheathing is
.08 Btu/ftz—deg E-hr, for ceiling about .05, for floor about .06
including the crawl space. Infiltration was not measured; we estimate
it at 1 air exchange per hour (which is rather high for a l-room,
1-story building) corresponding to the description of the house as
"leaky'.

We calculate ﬁq as follows:
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Floor cavity .87 x 414 ft2 x .06 —-Btu 22 Btu/deg F-hr

ftz—deg F-hr
Wall cavity .80 x 450 £t x .08 = 29
Ceiling cavity .87 X 414 ft2 x .05 =18
Windows 30 £t x .60 = 18
Infiltration: 8 ft X (414 ft° + —;- 115 £t2) x .018 Bt‘go - 68
£t°°F

155 Btu/deg F-hr

Solar gain is estimated as follows: The ASHRAE solar heat gain
Btu
ft

at 40° latitude. A full day's solar gain is twice this or 1630 Btu/ftz.

factor> for a half-day in December is 815 for a South-facing window

A sine-wave of half-period 9.2 hours, corresponding to the sunrise and
sunset data for the house on December 13, 1975, would have an amplitude
278 Btu/ftz—hr to produce this solar gain, since
t=ﬂ/m1
1630

. 2 2 ) _
IR Uyt = T T /9.2 hrs) 5.86 = g~

t=0
Solar collection is increased somewhat by the reflective backside
of the collector window cover. If we assume a typical sun angle of 20°

above the horizon, and an intensity of So’ then the intensity on the

reflector surface is SO sin 20°.
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Not all of this reflected light will reach the receiver window;
since the receiver is not infinitely wide, some of the early-morning or
late-evening light will miss the window to the west or east. However,
all specularly reflected light at noon will reach the receiver. The
intensity of the reflected light should be about %)x (reflectivity) x
sin 20° for a solar gain of So;this equals about .2 SO for a reflectivity

of 60%.
Btu
£t 2

Solar gain is thus approximately 1.2 x 278 -x 200 (net ft2 of
glazed area) = 66,700 Btu/hr.

This is rounded to 65,000 Btu/hr.

We have used solar gain data for a south facing vertical window,
although the actual collector is tilted 30° upward. This should not
make too much difference, since for the latitude of this house, maximum
solar elevation angle is 27%°. Thus at noon, solar heat gain through
a vertical window is reduced to approximately cos 27%° or .89 of its
maximum value for the tilted window. For other hours, this ratio is
larger, until in the early morning and late afternoon it exceeds 1.
Weighting the cosine of the angle between solar flux and collector
normal by ASHRAE solar heat gain factor for December 21 at 40° latitude,
we find that a vertical collector receives 7% less solar gain than the

tilted collector, this 7% is better than the accuracy of the calculation

and is ignored.

0 is 9:30 a.m. when the

Sunrise was at t = -1.7 hrs, where t
collector cover was opened; sunset was at t = 7.5 hrs = t3 + 1.0. Thus
.3415.hr—1. The phase of solar gain is such that it is

']-r —
L 7.5-(-1.7) ilw () - .9903]
centered between sunrise and sunset, thus S = 65,000 e

w
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Solar gain was also measured empirically; however, the measured
quantity was solar gain on a horizontal surface rather than a vertical
or tilted one. Converting to the tilted surface would require some
assumptions about direct vs. scattered solar intensities and some
lengthy calculations; for this reason we used handbook estimates. The
data did, however, establish that solar gain varied approximately
sinusoidally in time. .

Ambient temperature was fit by eye to a sinusoidal form; the

iwo(t—S p.m.)

result was that TA = 48°F + 6.5° e

Since the collector-cover was opened at 9:30 a.m. and shut at 4 p.m.
—imO(S.S hrs)
we set t =0 at 9:30 a.m. and ty = 6.5 hrs; so ATA = 6.5° e

We set ap =1 and 0 for the assumption that all the

W
heat was absorbed in the milk bottles. Later, we checked the hypothesis
that sunlight was also absorbed through the west windows; the results

of that calculation are shown in the note below.

In summary, the inputs to the model are:

Uq = 155 Btu/deg F-hr
ho-zsa Bt § o d hr U =30.1 Btu/deg E-hr C._ =637
W deg F-hr wi s 254 Btu/deg F-hr U = 0.1 Btu/deg F-hr C =
Btu/deg F
L o_gsBtu (- 12,000 Btu/deg F-hr U, . = 400
f deg F-hr fi ’ fod
U, = 30  Cg= 3535 Btu/deg F
S = 65,000 ¢ +(-9903) pry/ny
-iw_ (5.5 hrs)
_ o] 2
ATA = 6.5 e where Wy = 37 Hrs
w. = .3415 radians/hour
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Solving the lumped parameter model gives the temperature curves of
Table 8 which are plotted for collector temperature and room temperature
in Fig. 12.

NOTE: Modifications to the lumped parameter model for two sources of

solar gain

This exercise is motivated by the desire to see the effect of
explicitly modelling the solar gain through the west facing windows
in the Sonoma house. This solar gain function has a different shape than
the primary solar gain function, thus it generates new inhomogeneous
solutions.

Assume that the secondary solar . function has the form

iw,t

. 2
S,(t) = {Sze b <t <,

0 otherwise.

This is also a sinusoidal form, but

iy # w, and ty and t, have no relationship to the other times in the

1
problem. In the Sonoma case, W, would be faster than Wy, since the west
windows collect sunlight for only about half the day. The time at which
solar gain begins is tl; this would be about noon for a west window;
t, would correspond to sunset, at about 5:30 p.m. Note that for the
example given t, would occur at'hight;'while ty would be during the'Hayy
The inhomogeneous solution produced by this new excitation is:

T =
XSWZ °

-3
H
!
>
9]
o
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with the ¥'s being given by by the same equations as before (A2.3-11)

except using W, instead of Wy and using o's appropriate to the secondary
solar gain radiation balance in calculating the a's. To illustrate

the last point, the primary solar gain is all absorbed in the milk

bottle assembly, so that O = 1 o, = 0 Op = 0. But the west-window
solar gain is absorbed on the walls and floor of the structure. If it falls
on studs or building materials, that heat is absorbed on the '"wall'" surface,
and the heat gain is described by o - If the sunlight falls on an

area between the studs, the heat is transferred directly to the room,

and this heat transfer is described by Op - Thus Qg = 0,

o = 0.277 = W98 FE2 + 156 £62 o pp o, - o

W 450 ft2 . 828 £ft2 R £
Note that Xgg and Xgg May have two values, one for daytime
2 2

and one for nighttime, since nighttime is defined as that time
during which the main collector cover is closed.
We thus must solve the differential equations for 4 periods of

the day, and match boundary conditions at 4 different times. The solu-

tions are:
-A ot -A, Lt in t '
1d 2d o 1wlt
( A.€ + A. e +X AT e +X S e O<t<t
1 2 Ag A S, 1 1
T A e_‘/\'ldt+ A e Aot fy. AT elw t+ y ; iw,t 3
= e t\t<t
w 473 4 Awd A Sw2d 2 1 d
A (t-t ) -A, (t-t ) iw t iw,t
d
Ase n + A6e n d * Xp ATAe ° 4 Xg S2 e 2 tdfét‘<t2
wn w2n
A, (t-t)) -A (t-t) iw t
 Ae in d+A n d+X ATAe t2<t<24
7 8 Awn
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—Aldt —AZdt iw t 1wlt
<
AlKld e +—A2K2d'e * Xa ATA e * Xg Sle 0st <ty
fd f
ALK ehAldt+A.K e_AZdt+ Aot iy e o se2t o
3°1d 4%2d X Biz® Xs 1% Xgag©2® Sty
A f
fd
T, = _ _ _ _
t A-K e b n(t td)+ A K e Azn(t td)+ X AT elw t+ X S elwzt
571In 6 2n Afn A Sf2n 2
<
td t< t2
AL (t-ty) A (t-t) iw t
- n d n d o)
, <
A7Kln e + A8 K2n e * Xa ATA e t, t <24 hrs
fn
(16b)

These solutions for Tw and Tf must be matched at each transition time:

. - + _
that is, Tw(tl ) = Tw(t1 ) Tf(t1 ) = Tf(t1+), etc. This procedure

generates eight equations in the eight unknowns A. These are relatively
easy to solve and can be expressed analogously to the ordinary lumped
parameter case in terms of some nested definitions. The results are written

in the form of a program below; see the final equations for the overall form.

_Alntn
. (K - K30 @
1 Koa - Kia
At
2n n
. (Ko - Kig) e
2 Koa = ®ia
“1
Foo= (K K. ) -{<x M AT, - oo S, - K ( Y. -
3 24 = M4 Ag T %A d) A Xge 81 K (( A Awd) AT, -
_Alntn
F4=e "Fl S\
_AZ t XSw l/
F. = e nono_ F
5 2

(17}
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Then
Ay - (-Q)(1Q,) - 0.Q
Q QG * Fig
s 1, Mt 1-q,

4 177 28 3 7
A3 = F4 A7 + F5 A8 + F6 + F8
A2 = Pl A7 + F2 A8 + F3
AL =F, A, + F. A, + F

7 578 6

This completes the algebraic solutions; we use the results for
the A's above in (A2.3-36). Room temperature is still derived from
(A2.3-4). We next evaluate this solution for the Sonoma house. We use
all the old parameters; in addition we need to calculate SZ’ Wy and the
a's for calculating the Xgorg-

First we calculate the a's. The sunlight entering from the west
window does not reach the collector bottles, so Og = 0. The light
instead falls on the walls, and floor. Since the wall surface material
in this building was very light (e.g. paper rather than gypsum board),
all sunlight falling on the space between studs winds up heating the

room air. Thus Op is given by the percentage of wall, building material
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and floor area which is located between the studs, and o, = l—aR. Thus
198 f£t2 + 156 f£t2
450 £t2 + 828 £t2

Op = 0.723 o, = 0.277. (Note that 0.277 =

Solar gain is derived from the ASHRAE solar heat gain values
for west windows. We total the solar gain for the 6 hours 12 noon to
5 p.m. and find a sine wave whose integral gives this same value. We

assume that the sine wave starts at 11:30 a.m. and ends at 5:30 p.m.
WxX=T

Since f sin wxdx = % , . we have that S2 = (sum of solar gains)
£0

w
x—z—z— x 0.9 (for double-pane glass transmission factor) % 0.9 (for net area

i -1 .
2 = % hrs © 0.5236 hr ~. Solar gain

peaks at 2:30 p.m. in this model; since t = 0 occurs at 9:30 a.m.
iw, (t-5 hrs)

second solar gain is given by Sz(t) = 2475 e 2 . The times

of window) x 30 ft2 = 2475 Btu/hr for w

are then: ty = 2 hrs, tq = 6.5 hrs, t, = 8 hrs.
The algebra is then straightforward; we display the results below.

The room temperature curve is plotted in Fig. 12.
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Thus:
i(w_ (t-9.56)) iw, (t-9.120)
391 o 1943t Lgn 7612420 5 g © +6.13e 1
iw (t-9.56) jw, (t-9.12)
3576 1943t om0 012420, 5 pge © +6.13e 1
T = iwz(t—7.35)
w + 3.23e
iw (t-9.21)
-.1907 (t-tq) -.02312(t-tg) 0
- 3.8¢ +2 5.5e +2.87 e iwz(t—7.35)
.22
! -.1907(t-t) -.02312(t-t ) oteie 2
+ 0.1e + 25.6¢e + 2,87e 70 :
-.1943t -.1242t iw (t-9.84) iw, (t-6.44)
5.0e + 87.9e + 2.75¢e +49.99 e
- iw (t-9.84) iw, (t-6.44)
46e 1943, gg 1 1242t L5 g5 O +49.99e 1
iw, (t-9.41)
2
T = + .88¢e¢
£ -.1907 (t-t,) -.02312(t-t,) i (t-11.72)
0.2e + 92.0e +0.48 e
iw, (t-8.81)
+ ,32e
-.02312(t-t ) iw (t-11.72)
d 0
+ 92.4e +0.48 e
-.1943t -.1242t iw (t-7.09) iwg (t-6.69)
-14.3e + 41.9e¢ + 3.8le +11.65 e
iw (t-7.09) iw, (t-6.69)
1316 1943t 4y 5o 1282t 3 g1 O +11.656 *
T. = iw, (t-5.41)
R + 6.258 °
-.1907(t—td) —.02312(t—td) in(t-6.65)
- 1l.4e + 28.2e + 3.45 e iw, (t-5.38)
+ 6.32 e 2 et
-.02312(t-t,) i (t-6.65)

+ 28.3¢e + 3.45 e
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As seen in the figure, the solution differs from the l-solar-gain-
function solution only during the late afternoon, when it provides a
closer fit to the data. Considering that the actual shape of the
west-window solar gain function is skewed toward sunset from a sine
wave, a solution using more Fourier terms for the west-window solar
gain would be even closer to the data.

It is also evident from the A's that the 2-solar-gain solution
could be obtained much more simply in this example as a perturbation

onto the l-solar-gain case.
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3.6 Conclusions

We have shown that the analytic building models of Sec. 2 can
successfully predict the performance of simple one-room passive solar
buildings to within 10% accuracy, over a variety of weather conditions.
Both the distributed and lumped parameter models show good patterns of
agreement with the data, over their respective ranges of applicability.

We have also illustrated, by the detailed calculations in this
section, how the theory of Sec. 2 can be used numerically for real
buildings. In the process of describing these calculations, we have
seen several interesting effects: the destructive interference of the
responses to sunlight with the response to ambient temperature in a
Trombe wall building, the long "memory' of both LASL test cells, and
the possibility of thermally averaging over illuminated and shaded
portions of a material surface.

We have derived a formula for the collector efficiency of a
Trombe wall, and have seen several examples of how simple models can
be used to describe building response to complex weather patterns.

These results show that the models give reasonable predictions
for simple buildings. Comparison to more complex structures can be
done both with multi-zone theoretical models or through larger-

scale experiments. This will be the subject of future papers.
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Section 3 Footnotes

1.

The thermal properties of concrete are known to be dependent on the
exact composition of the specimen, as well as on its moisture
content and density. There are no canonical values for any of these
parameters, and the building literature contains several
inconsistencies with regard to concrete'é heat capacity.

The Ashrae 1977 Handbook of Fundamentals (Ref. 15) lists concrete
heat capacity as 0.21-0.22 Btu/°F-1b; depending on composition,
in Chapter 22, Table 3A. However, the sources for data in this
table are not listed, and the footnotes to the table warn the reader
that the values it tabulates "are intended as design (not
specification) values for materials in normal use. For properties
of a particular product, use the value specified by the manufacturer
or by unbiased tests."

As if to add emphasis to this cautionary statement, the same
handbook gives a different estimate for concrete heat capacity in
Table 3 of Chapter 37; in that table the heat capacity is listed
as 0.156 Btu/°F-1b., and attributed to Perry's (Ref. 30).

Unfortunately, Perry's is also self-inconsistent on the heat
capacity of concrete. Table 3-201 does indeed say that Cp = 0.156
Btu/°F-1b. for concrete between 70°F and 312°F, but on the same line
it also says that Cp = 0.219 Btu/°F-1b. for concrete between 72°F
and 1472 °F. No explanation is provided, nor is there a reference.

In addition, Perry's also discusses heat capacity of concrete
on page 3-235, where it says that concrete components (''sand,

crushed rock, cement mortars, etc.') all have heat capacity within
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roughly 20% of 0.184 Btu/1b-°F (at 70°F). This is attributed to
Cragoe, N.B.S. Misc. Publ. ?Z; 1929.

A third source of information on concrete, Neville (Ref. 16)
says that its heat capacity is between 0.20 and 0.28 Btu/°F-1b.
But this source also states that the diffusivity (K/pcp) of
concrete ranges from 0.02 to 0.06 ftz/hr. Since Table 7.12 of
Ref. 16 shows that K increases faster than linearly with p, the
higher values of diffusivity must be associated with the heavier
concretes. But for the densest type listed, p = 150 1bs/ft3, we
would require gp<!0.145 to get the diffusivity as high as
0.06 ftz/hr.

We conclude that one cannot find a defensible single estimate
for concrete heat capacity from tables, and that experimental
observation is necessary to describe a specimen of concrete.

For example, pcp =18 Btu/°F—ft3 gives °p = 0.125 Btu/°F-1b. if

p = 144 lbs./fts. The values from footnote 1 above average to
.205 Btu/°F-1b. with standard deviation o =0.046 Btu/°F-1b. So
our measurement is only 1.75 o lower than the average of listed
values, which is not unreasonable for n = 5. Furthermore, our
measured diffusivity 5%—-= 0.044 ftz/hour is within the range of
0.02-0.06 of Ref. 16.

Solar heat gain factors include the effects of light transmitted
through glass into the room and light absorbed on the window and
conducted back into the room. They are calculated for single pane
glass, and tabulated for various window directions, times of year
and latitudes, in Chapter 26 of the ASHRAE ''Handbook of Fundamentals"

for 1977 (Ref. 15).
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Table 1 Los Alamos Weather Patterns

Date TA (°F) ATA (°F) SolarzGain
(Btu/ft“-day)
2/21  32. 1923
/22 35. 1915
/23 36.7 . (£-15:00) 1909
/24 37. 16e ° 1924
i, (£-14.71:00)
/25  40. 14.3¢ ° 1851
i, (t-14.62:00)
/26 43. 11.19 1086
i, (£-12.46:00) .
/27 42, 3.96 785
., (£-14.69:00) .
/28  39. 7.96 ¢ ° 775
4, (£-11.95:00)
3/1 39. 2.82 e ° 144
,, (£-13.43:00) 3
/2 39. 8.07 950
., (£-18.61:00)
/3 25, 411 ¢ © 785
., (£-14.65:00)
/4 36, 10.92 ¢ ° 1392"
i, (t-12.62:00) )
/5 40.3 7.44 710
., (t-14.57:00)
/6 36. 9.36 e ° 1107
i, (£-14.71:00)
/7 39. 8.36 e ° 1322
., (£-15.21:00)
/8 41. 13.49 1753
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Table 1 (cont.)

i (t-14.90:00)

/9 43.5 13.76 e ° 1501
., (£-12.78:00)

/10 37.2 1.15e ° 404
., (t-13.83:00)

/11 39.4 8.75 ¢ ° 1029
., (£-12.07:00)

/12 36.5 6.49 ¢ ° 597
i, (£-14.10:00)

/13 35.1 10.86 e ° 1518

*®
one hour of data missing
* &
two hours of data missing
&k
three hours of data missing
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Gain Wall

w R <.}H“_~f_t2_-_°£>R
Btu 2
0 .940 .0603
27 /month 937 o 00651 o601 o~ 08751
2m/14 days L9265 ¢+ 1AL 0594 o -18611
2m/10 days 9143 ¢ -19°31 05858 o 2°84
2m/2 days 615 o 077 03 o -082%
2m/day .3991 e 7874 .0228 6'1-3801
211/12 hours 2645 o™+ 1201 o118 o-1-764
21/8 hours 2225 ¢7-00%1 o077 o-2:021i
2m/6 hours .2017 e -6391 0055 e-Z.ZSSi
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Table 3 Building Response Functions for the Direct Gain Cell

w A (Btu/hr-°F) B C (Btu/hr-°F)

0 40465 .952 40.465
w, 46.83 o*- 38121 9396 o=+ 11121 .
W 51.93 ¢F 47401 . 10.05 o 0500i

Yo 153.9 o201 818 48861 5o g, 0005
2w 141.65 o 1674 3548 o= 3741 x
30, 143.91 ¢*- 1281 3574 o™ +5121 *
du, 145.39 ¢F-1111 3433 ¢~ -2841 *

*
not required for solution of the model
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*

Response of the Concrete Mass Temperature
to Historic Weather, Direct Gain Cell

Date

Period

T - T

- Ty B

1978
02/24

/25

/26

/27

/28

03/1

day
night
morning
day
evening
morning
day
evening
morning
day
evening
morning

day

evening
morning
day

evening

66.

67

54

63.

64

51.

53

48

43

43

38.

35.

36

34

29

24

18

82e

.63e

.03e

63e

.62e

29e

.08e

.90e

.13e

.23e

7de

13e

.70e

.07e

.08e

.95e

.98e

.0312(t-7:00)
.0312(t-18.52
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52
.0312(t-0:00)

.0312(-7:00)

.0312(t-18.52
.0312(t-0:00)
.0312(t-7:00)

.0312(t-18.52:

iwo(t—ZO.SS:O
+1.8%

iwo(t—ZO.
+1.8%e

iw (t-20.26:0
(o]

:00)

+ 1.69%e

iw (£-20.26:0

+ 1.69%e

iwo(t-zo.
+ 1.69e
iwo(t—20.17:
+ 1.32e

iwo(t—20.17:
+ 1,32e

1 00)

iwo(t—ZO;
+1.32e
iwo(t-18.01:
+ 0.47e

iw (t-18.01:
+0.47¢ °

00)

iwo(t—18.
+ 0.47e

iwo(t—20.24:
+ 0.94e

iwo(t-20.24:
+ 0.94e

:00)

:00)

iwo(t—ZO
+ 0.9%4e
iwo(t—l7.50:
+ 0.33¢e
iwo(t—l7.50:
+ 0.33e

iw (£-17.

00)+ 0.33e

iw, (t-18.10:00)

+21.13e 1
55:00)

0)

0)

0) iwl(t—18.1:00)
+ 20.33e

26:00)
00)

00) iwl(t~18.1:00)

+ 11.93e
17:00)

00)
00) iw

+ 8.62¢ 1
01:00)

(t-18.1:00)

0)

00) iwl(t—18.l:00)
+ 8.51e
.24:00)

00)

iwl(t—lS.l:OO)

00) + 1.58e

50:00)

* J—
Concrete temperature for each day is measured with respect to T, for that day.

Since Tj changes discontinuously at midnight, the definition and value of T.- T,

A

will also change, but the actual temperature will be constant.

T, is given in Table 1.

A
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Date
1978

Period

TC - TA (OF)

03/02

/03

/04

/05

/06

/07

morning

day

evening

morning

day

evening

morning

day

evening

morning

day

evening

morning

day

evening

morning

day

evening

15

22

26

36

38

35.

18

30

36

26

29

28

27

33.

35

26

35

39

.4le

.76e

.25e

.7%e

.1lde

19e

Ade

.01le

.14e

.82e

.31e

.21e

.24e

98e

.80e

.80e

.98e

.54e

.0312(¢-0:00)
.0312(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312 (£-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:
.0312(t-0.00)
-.0312(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312(t-7:00)

.0312(t-18.52:

+ 0

+ 0
0)

+ 0

iwo(t-18“98:00)
.95e

imo(ﬁ—18.98:00)
.95e

iwl(t—18.1:00)
+ 10.43e

iw_(t-18.98:00)

+ 0.95e

iwo(t—0,16:00)
.48¢

iwo(t—O.lﬁ:OO)
.48e +

iwl(t-lSEI:OO)
8.62e

iw_(t-0.16:00)

+ 0.48e

iwo(t120.20:00)
.29%e

iwo(t—ZO,ZO:OO)
.29e

iwo(t-20.20:
~+ 1,29e

iwo(t—18,17:00)
.88e

iwo(t—18.17:00)
.88e

iwo(t—18.17:
"+ (0.88e

iwo(t—20.12:00)
.10e

in(t-zo.lzzoo)
.10e

in(t—ZO.lZ
+ 1.10e

imo(t-20n26:00)
.9%e

iwo(t-20.26:00)
.99e

+ 0.996

iwl(t-18.l:00)
+ 15.29e

00)

iwl(t—18.1:00)
+ 7.80e

00)

iw, (£-18.1:00)
+ 12.16e

:00)

iw

l(t—lS.l:OO)

+ 14.52e
iw (t-20.26:
o)

00)
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Date | Period

1978

e~ Ty €6

/08 | morning
day
evening
03/09 | morning
day
evening
03/10 | morning
day
evening
/11 | morning
day
evening
/12 | morning
day
evening
/13 | morning

day

evening

31.

44

50

40

48.

50

49

44

35

27.

33.

34

32

32

29

25

36

42

33e

32e

.06e

.00e

53e

.25e

.60e

28e

.32e

22e

1le

.34e

.2%e

.47e

.18e

.38e

.97e

.37e

.0312 (t-0:00)
.0312(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:
.0312 (t-0:00)
..0312(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
-.0312:(t-7:00)
.0312(t-18.52:
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52
.0312 (t-0:00)
.0312(t-7:00)

.0312(t-18.52

+ 1.

+ 1

00)

:00)

+ 1,

+ 1.

:00)

.59%e

.62e

.1l4de

.03e

.77e

iwo(ta20n76:00)
59e

iwo(t—20:76:00) iwl(t—18.l:00)

+ 19.25e

in(t$20q76;00)
+ 1.59%e

iwo(t-20.40:00)

.62e

iml(t—18.l:OO)
+ 16.48e
iw (t-20.40:00)

+ 1.62e
iwo(t-18,33:00)

iw_ (t-20.40:00)

.14de

iw

lwo(t~18.33:00) 1

+ 4.44e

iwo(t-lS.SS:OO)
+ 0,14e

iwo(tv19.38:00)

(t-18.10:00)

.03e

in_ (t-19.38:00) iw, (t-18.10:00)

+ 11.30e

iw (t-19.38:00)
+ 1.03e

iwo(t—17.62:00)

.77e

iwl(t—18.10:00)
+ 6.56e
iwo(t-17,62:00)
+ 0.77e
iwo(t—19,65:00)
28e
imo(t—19.65:00)
28e + 16.67e

iwo(t-lg,és:oo)
+ 1.28e

iw_(t-17.62:00)

iwl(t—18.10:00)
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*
Table 4b. Response of Direct Gain Cell Room Temperature to Historic Weather

Date | Period T. - T, (°F)

1978

iw_ (t-16.36:00) iw, (t-15.32:00)
02/24 | day 51.34

+4.14e + 25.13¢ 1

iwo(t-16.36:00)
+ 4.1l4e

iwo(t—16.07:00)
+ 3.7e

e—.0312(t—7:00)

night | 51.96¢ -0312(t-18.52:00)

/25 | morning 41,56+ 0312(t-0:00)

iwo(t—16.07:00) iml(t—15.32:00)
7e + 24.18e
iwo(t—16.07:00)
+ 3.7e
iw (t-15.96:00)
o
e
iwo(t—l 596:00 iwl(t—15.32:00)
9e + 14.19%e
iwo(t—15.96:00)
+ 2.9e
iwo(t—13.82:00)
+ 1.0e
imo(t—13.82:00) iwl(t—15.32:00)
+ 1.0e + 10.25e
iwo(t-13.82:00)
+ 1.0e
iwo(t-16.05:00)
+ 2.1e

day 48 ge--0312(-7:00) o

evening 49.6e_'0312(t_18'52:00)

/26 | morning | 39.4¢™"0312(£-0:00), 5

day 40.8e_'0312(t—7:00)+ 5.

evening 37.66—'0312(t_18'52:00)

/27 |morning | 33.1¢" - 0312(£-0:00)

day 33.28—.0312(t—7:00)

evening 29.73"0312(t-18.52:00)

/28 |morning 27.Oe-'0312(t—0:00)

iwo(t-16.05:00) iwl(t-15.32:00)
.le + 10.12¢
iwo(t—16.05:00)
+ 2.1e
iw (t-13.30:00)
0
.7e
iwo(t—13.30:00) iwl(t—15.32:00)
.7e + 1.88e
iwo(t—13.30:00)
+ 0.7e

day 28.2e—'0312(t_7:00) + 9

evening 26_26—.0312(t—18.52:00)

03/01 |morning 22_36--0312(t—0:00) . 0

day 19_28—.0312(t—7:00) + 0

-.0312(t-18.52:00)

evening | 14.6e

*Temperature is measured with respect to T, on that day. Since T, changes
discontinuously at midnight, the definition and value of (Tp-T,) = will also
change, even if the temperature TR is constant. But usually, %he actual
temperature TR also jumps a degree or SO due to the approximation of this model.
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Date |Period

1978

03/02 |morning
day
evening
/03 | morning
day
evening
/04 | morning
day
evening
/05 |morning
day
evening
/06 |morning
day
evening

/07 |morning

day

evening

11.

17.

20.

28.

29.

27.

14.

23.

27.

20.

22

21.

20.

26.

27.

20

27.

30

8e

S5e

2e

3e

3e

Oe

2e

le

8e

6e

.5e

7e

Qe

le

Se

.6e

6e

.de

.0312(t-0.00)
.0312(t~7:00)
.0312(t-18.52:00)
.0312(t-0:00) .
.0312(t-7:00)
.0312(1:—18.52:00)+ 1.
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:00)
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:00)
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:00)
.0312(t-0:00)

.0312(t-7:00)

.0312(t-18.52:00)

iwo(t—14.79:00)
+ 2.1e

iwo(t—14.79:00) iwl(t—15.32:00)
+ 12.41e

imo(t—l4.79:00)
+ 2.1e

iwo(t—19.90:00)
1.1e

iwo(t—19.90:00) iwl(t—15.32:00)
+ 10.25e

iw (t-19.90:00)
o}
le

iwo(t—16.01:00)
+ 2.8e
iwo(t—16.01:00) iwl(t-15.32:00)
+ 18.18e¢
iwo(t—16.01:00)
+ 2.8e
iwo(t—13.98:00)
+ 1.9e
iw (t-13.98:00) iw, (t-15.32:00)
0 1
+ 9.,28e
iwo(t—13.98:00)
+ 1.9e
iwo(t—l 5.92:00)
+ 2.4e
iw (t-15.92:00) iwl(t—1.532:00)
+ 2.4e ° + 14.46e
iwo(t—15.92:00)
+ 2.4e
iwo(t—l6.07:00)
+ 2.2e
iwo(t—16.07:00) iml(t—15.32:00)
+ 17.27e
iwo(t-16.07:00)

+ 2.1e

+ 1.1e

+ 2.8e

+ 1.9e

+ 2.2e

+ 2.2e
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Date | Period

1978

T -T

c A (°F)

03/08| morning | 24

day

evening | 38

03/09| morning

day

evening | 38

/10| morning

day

evening

/11| morning

day 25

evening | 26

/12 | morning | 24

day
22

evening

/13| morning | 19

day

evening

34,

30.

37.

38.

34.

27.

20.

24.

28.

32.

.le

le

.5e

7e

3e

.be

le

Oe

le

e

.de

.de

.8e

9e

.de

.5e

de

6e

.0312(t-0:00)
.0312(t-7:00), o
.0312(t-18.52:00)
.0312(£-0:00) _ .

.0312(t-7:00)

.0312(t-18.52:00)
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:00)
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:00)
.0312(t-0:00)
.0312(t-7:00)
.0312(t-18.52:00) _
.0312(£-0:00) |
.0312(t-7:00)

.0312(t-18.52:00)

iwo(t—16.57:00)
+ 3.5e

iw (t-16.57:00)
o)
Se +

+ 3.5e

iw (t-16.25:00)
0
.6e

iwo(t—16.25:00)+
+ 3.6e
+ 3.6e

iwo(t—14.18:00)
+ 0.3e

iwo(t-14.18:00)
+ 0.3 +

iwo(t—14.18
+ 0.3%e

iwo(t—15.19:00)
+ 2.3

iw (t-15.19:00)
+ 2.3 © +

+ 2.3e

iwo(t-13.44:00)
+ 1.7e

iw (t-13.44:00)
o}
+ 1.7e +

.7e

iw (t-15.46:00)
o}
.8e

iwo(t—15.46:00)
+2.8e

+ 2.8e

iw (t-16.57:
0

iw (t-16.25:
o

iw (t-15.19:
o

iw (t-13.44:
o}

iw, (t-15.32:00)

22.9e 1
00)

iwl(t—15.32:00)
19.6e

00)

iw, (t-15.32:00)

5.280 1

:00)

iw_ (t-15.32:00)
13.44e

00)

iw, (t-15.32:00)

7.8e 1
00)

iml(t—15.32:00)

+ 19.83e
1wo(t—15.46:

00)
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Table 5. Response Functions for Trombe Cell Envelope Wall

‘(hr ft—F)

Y Rle Btu Roe

0 .9388 .06119
21/14 days = w_ .9387¢ 0021 .06104¢ "+ 93791
2r/10 days = u ! .93864¢ "+ 00251 060906 05281
2m/day .9319¢ ™+ 01651 .04803¢ ™" 28921
21/12 hrs L9279+ 02551 .04175¢" 22954




Table 6. Response Functions for the LASL Trombe Wall
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2_o

. R () Ror Rr (e )
0 .0125 4413 .5584
2/1a days 9765319551 4p1g7e” -38261 cap7ge- 14041
210 days  .o4sse=-26381  4og5em-52511 cp066e" - 18841
on/day .4195¢~ 0201 0825602161 3116e” 44
21/12 hrs 31676~ 0001 0p79ge*2- 7341 2535070131
21/8 hrs 265070821 .012250™ 1+ 9661 .220e” ">




Table 7. Building Response Functions for the LASL Trombe Wall Cell

Btu Btu
W A ( SF_hr B C ( OF_hr )
0 23.79 L4437 23 79
2m/14 days 27.35e'31161 _42436‘-38161 «
21/10 days 29.92¢ 37391 * 29 176" - 26641
2m/day 56.90 ¢ 30072 08224¢ 72504 g 7417 M7
21/12 hours 63.95 o +276°1 027266727411 *

*not required for solution of the model
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Trombe wall average temperature
VS,
Depth into wall

”O(Illlllllllllllll

Temperature (°F)

February 24,1978
Taqi ruary
100 |~ —
1_
90 4o -
85|||l||||'|1llllll
O 4 8 12 16
Inches
XBL 789 -1765
Fig. 1. Trombe wall steady-state temperature as a function

of thickness into the wall. The temperatures are

averages for the day of 24 February 1978.
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{§ 7
g 1
1 1] ]
91" | B
1]
?
2
23
4-33
44"
Direct gain cell
/3'11(
A~
9's / '
, 4's
5'28"
8l /
60" //;
7'6d"
e
. —<4'33"
58"¢
2" 5'3" '

Direct gain cell sketch

XBL 789-2201A

Fig. 2. The Los Alamos direct gain cell. Dimensions are based

on measurements by the author.
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Los Alamos weather

Model

Data

N S I (S () N N N N I N
21 22 2% 24 25 26 27 28 1 2 3 4 5 & T 8
Feb Mar Date
XBL788-1467
Los Alamos weather as a function of date. This figure shows

total solar gain (the sum of hourly solar flux for the whole day),

and average ambient temperature.

We model the variations in

weather using a constant term plus one sinusoidally-varying term;

the result is labelled "'model."

This idealized weather is used

to predict building response for March 8.
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TTT T T T T T T T I T T T I T T T T T T T rTTIiTiTrTTd
Los Alamos solar flux vs. time
250 — :1 \ ial s g h
/i Al I A 73
N A R A S A T A
< ® ® ° e 0\. H e ©
2 150 l -
m
=<0y T \
éloo_. ) e . ® . e ° | Q-
S
S 50 B
e [ ]
Ll lIIllIII b eedr b
J2m6 12 6 12 2 6 12 6 12 6 12 6 12 6 2 6 12 6 12
2/21 2/22 2723 2/24 2/25
Date
XBL 789-1764
Fig. 4. Los Alamos solar flux as a function of time for the days

preceding February Z24.
patterns from day to day.

Note the constancy of solar
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[ | [ | | 1 | |
Direct gain cell, 24 February 1978
o)™ Lumped model, mean|
_ NN radiant temp.
L
° |00 —
Nt Data
2 90 —
2
o onh
= 80K —
2 |
7 Continuum,_|
cED 0 model
2
60 Lumped model, room _|
temp.
S0 —
40 | | | | | | | l —
2 3a 6a 9a 12 3p 6p 9 2
mid noon mid
Time of day
XBL 789-1470
Fig. 5. Predicted room temperature and observed data as a function

of time of day for the direct gain cell for 24 February 1978.
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Section 3

Fig. 6

Predicted room temperature and observed data for the direct gain
cell as a function of time of day on March 8, 1978. The curve
labelled "model" was calculated taking into account the weather
variations for the previous two weeks. The curve labelled

"no weather' shows the predictions of the model for the case
where all days before March 8 were assumed to have the same

weather.
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gain cell , 8 March 1978

90

@
O

70

60

| ] |

\

\
\\No weather

50 —
40 | [ l l
|2 6am |12 6pm |12
mid noon mid
Time of day

Fig. 6.

XBLT788-1466
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Direct Gain Cell, Room Temperature vs. Date

b bty b b ot b b b Lo |

I A N

2-24 2-25 2-26 2-27 2-28 3|

A vl

lllil|||||!llllllll||||‘|l|||||||||[||||||1||||[

— I\ — A ]

3-2 3-3 3-4 3-5 3-6 3-7

T T T T T T [T T T[T [ TTT [T [T TT[TTT]

ol b birete o ber b e b b b b e |
2 6 12 6126 126 126 126 126 126 126126 126 126 12

e e~ —— YT ey

3-8 3-9 3-10 3-11 3-12 3-13

XBL 789- 1766

Comparison between room temperature observations and predic-
tions of the lumped parameter model for the direct gain cell.
Dotted portions of the '"data' curve indicate where data is
missing. Model input data, such as solar flux, is also
missing at these times; interpolations were used for the

calculations.
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L—Sfyrofocrn

8’11’

:::;;_Two panes
of glass

Styrofoam
X beads

t_‘]!_'ll

Styrofoam

The Los Alamos Trombe wall cell.

measurements by the author.

Air
space

Concrete Trombe wall

XBL 789-11086

Dimensions are based on
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100 L

Trombe wall cell, 24 Febuary 1978

90 -

Data

—~ 80 Model —
L.
o
1))
R
3

© 701 —
()
Q
£
]
£
o

o 60 —
(0t

S50 —

401~ -

I I I I I I I I
2m  3a 62 8 12m 3  6p__ 9p I2m
Time of day
XBL788-1465
Fig. 9. Predicted room temperature and observed data as a function

of time of day for the LASL Trombe wall cell, 24 February 1978.
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IR ! T 1TTT7 II i l P ll

Trombe wall cell, 8 March 1978

Y “No weather

Ll rrret v b

l2mid eam I2noon  6pm [2mid

10.

Time of day
XBL788-1469

Predicted room temperature and observed data as a function of
time of day for the LASL Trombe wall cell, 8 March 1978. The
curve labelled 'no weather'" was calculated by assuming that
all days before March 8 had the same weather; the curve
labelled '"model" accounts for weather using the idealization
illustrated in Fig. 3.
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XBL 786- 1108

Fig. 11. Section view of the Sonoma house. The 60° surface at left
is the collector window; the heat storage assembly is

directly behind (to the right of) the window.
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Comparison of temperature data and model calculations for the
Sonoma house described in Section 3.5. The lower curves (TR)
graph temperature elevation ((room temperature)- (average ambient
temperature)) as a function of time. The solid curve is the
data for the day of 13 December 1975; the two dotted curves
describe model simulations. The flatter dotted curve is
calculated assuming that the solar gains through the small
west-facing windows are unimportant, while the more peaked
dotted curve includes a term approximating the effects of solar
transmission through the west window.

The upper curve plots collector ("floor'") temperature
elevation (Tf) and compares to one data point measured on a
similar day in February. The vertical error bars refer to the
range in temperatures from the bottom to the top of the collector.
The average temperature, ”Tf”, is probably closer to the top
of the range (~80 - 85°F of elevation with respect to ambient

average of 48°F).
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4.  QOVERALL SUMMARY

Passive solar design is one of several promising conservation
strategies which can, taken as a whole, reduce space heating needs to
insignificance. Current efforts at solar building construction are
impeded by a lack of theoretical understanding of the performance of
passive solar buildings, and the concommitant inability to predict the
results of various designs.

Existing public-domain building models do not yet handle solar gains
correctly — they fail to consider where sunlight is absorbed within the

building — and so are inaccurate for passive solar modeling. Even when

they are revised to treat solar buildings precisely, they will still
provide no insight into the thermally important features of the building.
To address these problems, we derive an analytic model of passive solar
building performance.

Of central importance in describing the heat transfers in passive
solar buildings is the distribution of solar energy gains within the
building. Our building models are therefore based on surface heat balance
equations for the surfaces on which the sunshine is absorbed. In the
distributed parameter model, we use the diffusion equation and the surface
heat balance to derive response functions for surface temperatures as a
response to sunlight and ambient temperature. These surface response
functions are combined to form building response functions, which give the
room temperature response to these weather variables or to heater output.

Using the building response functions, and simple sinusoidal repre-

sentations of the input functions for a typical design day:
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S1 elwlt day
solar gain S(t) =
0 night
- iwyt
. _ o
ambient temperature TA(t) TA + ATA e
heater output = HO s : a constant

we can compute an analytic expression for room temperature as a function
of time. We can generalize the results somewhat by allowing the solar
amplitude S, and the ambient temperature T, to vary slowly over time,
simulating the response of the building to weather variations.

We also develop a lumped parameter model, in which the response of
an element of the building is simulated by assigning it a lumped thermal
mass at a single temperature coupled to the inside and outside air. This
model is less intuitively transparent than the distributed parameter model,
but it can be applied to some problems where the distributed model is
unusable.

Both lumped and distributed models have been applied to predict the
performance of three one-room buildings. The predictions track the observed
temperature to better than 10% accuracy at all hours of the day. More
precise comparisons are not possible because of uncertainties in some of
the input data (e.g. U-values and transmissivities of the windows). This
accuracy is comparable to that achieved by computerized building models
as applied to non-solar buildings.

We expect that this model can be used as a design tool for passive
solar architects, and also as a guide for adding passive solar modifications

to existing building simulation programs. We will address the question of

application of our model to the needs of building designers in a future paper.
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Analytic models are more limited in scope of application than computer
models. They can easily be used to predict floating (that is, non-thermo-
stated) behavior of internal temperatures, and to predict response to

design conditions of weather, but they cannot easily model thermostat

behavior in response to historic weather. These are tasks best left to

computer models. But insights gained from the analytic models can be used
to improve the accuracy of computer models in their treatment of passive
solar buildings. We will use the results of the analytic models in a

later paper to modify the program TWOZONE so that it simulates solar

absorption in a manner parallel to that used in the analytic models.
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APPENDIX 2.3  The Lumped Parameter Model

In this section we derive the solution of the lumped parameter
model. This model describes a heavy material as a sandwich of two
thermal resistances 1/ﬁi and 1/6O surrounding a heat capacity C. It is
relatively simple to solve the equations for 1 or 2 heavy materials,
but the solution for 3 or more materials becomes clumsy, as it involves
inverting several 3 x 3 matrices.

Below we solve the model for a direct gain house with two heavy
materials, called "floor'" and "walls', for free-floating temperature.
Next, we discuss modifications needed to model a Trombe wall system.

We then discusss the solution of the model for a house with fixed
thermostat and continuous heater output.

We assume that we have already evaluated the lumped parameters
for the floor and walls in accordance with the formulae derived in

Appendix 2.5A.

Free Floating House

The solution begins with the two surface heat balance equations

ufS + hf(TR - Tfs) + Ufi(Tf - Tfs) = 0 (A2.3-1a)
for the floor surface, and
uwS + hW(TR - TWS) + Uwi(Tw - TWS) = 0 (A2.3-1b)
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for the wall surface, where the symbols are those used in Sec. 2.3

We solve these equations for the surface temperatures Tfs’ and Tws:

Tfs = 7f————1*'(@f S + thR + Ufi Tf ) (A2.3-2a)
U.. + h
fi £
_ 1 ”~ "~
Tws = :~———~;—-(aw S + hWTR + Uwi Tw ) (A2.3-2b)
U. +h
wi W
and use the results in the room heat balance, Eq. (2.2)
Uq(TR - TA) + hf(TR - Tfs) + hW(TR - TWS) =H + Op S
to derive the result
TN. =TN + TN, + —+SN_ +T (A2.3-3)
RR ™ "ww N 0 s A T
q
1 ﬁwﬁw1
where NW = — =
U  h +U
q W ow
: 1 PeVg
Nf=:——’\ A
Uq hf+Ufl
NR =1+ Nw + Nf
NwOLw Nf&f %R
N=/\ +A + o
> U, U U
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All the N's except NS are dimensionless; NS has dimensions of
%- or T%Q' Note that N is the ratio of the conductance from wall-to-
room to the quick heat loss coefficient and Nf is the same ratio for
the floor. NS involves terms with the ratios of material-to-room
conductances to material-to-surface conductances; these terms are large
for good insulators or high film coefficients (e.g. forced convection)
and small for good conductors or low film coefficients (e.g. glazed walls).

Thus we can express room temperature in terms of the materials

temperatures Tw and Tf and the driving forces TA’ S and H, as

Nw Nf 1 Ns 1
T. = —T + —T,+ — H + &~ S5 + — T (A2.3-4)
R NR w NR f NRUq NR NR A

The S term says that for good conductors or low film coefficients, the
direct response of room temperature to sunlight will be small; the
response will be primarily through solar heating of walls and floor.
Equation (A2.3-4) is repeated as (10) in the text of Sec. 2.3.

The dynamic response of the building is given by two differential
equations, which are Eq. (7) applied to the two materials, wall and

floor:

11
o

CT, + U (T, -T) + U (T -Ty) (A2.3-5a)

C

I
o

fe + Upy (Tp-Te) + Ug (Tg-Ty) (A2.3-5b)

We use (A2.3-2a and b) to eliminate the surface temperatures from
these equations. This brings in terms containing TR’ which is

eliminated by (A2.3-4). The resulting differential equations are:
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: Nw Uwo Awa
Tw + lkw (l —Ne> + T TW~— N Tf (A2.3-6a)
R W R
Aw kw Uwo OLw Ns
= NI/:IH+‘-I\I—R—+CW TA+}\W ﬁ-—+l\—]£{— S
R'q v
N i AN
: f fo w
T +[k < _——>+-——] T. - T (A2.3-6b)
£ f NR Cf £ NR w
A A. U o. N
- H"L[‘N'£+ chJ TA‘“Af[A_f*“N‘S‘]S
N U R f h R
T q f
U
where A= —ﬂ-N
w Cw W
ﬁq
Ae = o Ng

To simplify the algebra, we rewrite these as

Tw-kAPTw - AFTf = a, H + a, S + a T (A2.3-7a)

Te+rhgTe - AT, =2y H+ ag 5 + a T, (A2.3-7D)

where the A's and a's are defined by (A2.3-6 and 7) and have no
special significance except to simplify the algebraic

expressions. Their definitions are repeated in Table 2.1.

These are two linear first-order coupled differential equations.
Their solution is simple, but some of the algebra becomes complicated. We

first obtain the homogeneous solution, then a particular solution for
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some assumed forms of solar gain S(t) and ambient temperature TA(t).
For the free-floating house, we let the heater output be a constant

HO which may be zero.

Homogeneous Solution

We differentiate the left-hand side of (A2.3-7a) and then use

(A2.3-7b) to eliminate Tf. This yields an expression relating Tw, fw,

T, and Tf. We then use (A2.3-7a) again to eliminate Tf in favor
of Tw and TW; the resulting equation is
Tyt Ap+A) T+ A T =0 (A2.3-8)
where AX = AP AG - AF AQ
The solution is:
—Alt -A2t (A2.3-9a)
Tw = B1 e + B2 e
-1 < 1 2
where A= 3(h, + A F 2 iy, v A2 - an
2
Using this result in (A2.3-7a) we find that
—Alt —Azt
Te = BlKl e + B2K2 e (A2.3-9b)
—A% + AP
where K1 e w—
5 F

These two equations are the homogeneous solution. B1 and B2 are
arbitrary constants, which will be determined by the boundary conditions.

Al and A2 are the two relaxation constants of the house; we cheese Al to
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be the slower decay (Al < AZ)' For a typical passive solar house

1

1 . "
A, ~ =—=— while AZ Thours

1 2 days

Inhomogeneous Solution

The inhomogeneous solution depends on the driving forces. We
illustrate its solution with simplified driving forces which are
sinusoidal in form. We approximate ambient temperature T, by a single

1wt
term T, = ATA e ° where ATA is complex. We have set average ambient

A
air temperature equal to zero (that is, we measure all temperatures
with respect to the average ambient temperature) and w, = 2m/day.
Solar gain is approximated by a sine wave of frequency wy - This sine

wave repeats every 24 hours, and is set equal to zero at night.

Thus we take

S d
s(t) - { 1€ ay

0 night

We take sunrise to be t = 0, and sunset at t = ty- Heater output is
taken as a constant, Ho‘ We further assume that the house parameters
may change at night, producing two inhomogeneous solutions, one for day

and one for night.

Ambient Temperature Response

The form of the solution for ambient temperature response is
iwot iwot

A © and Tf = Xy . ATA where X and Xa have the

W f W f

values X and Xa for daytime parameters and Xg and Xp for the
W

d fd Wn fn

night. Substituting these expressions into (A2.3-7) we
(iwo-+AP) XAWATA - AFXAf AT, = ag ATA

(in-PA AT, - AQXAW AT, = ag AT,

) X
G AL
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Solving these we find that

aS(AG + iwo) +a, A

6 F
Xp = = ;
Aw (AG + 1wo)(AP + 1m0) - AF AQ
(A2.3-10)
.- a6(AP + iwo) + aq AO
Af (AG + iwo)(AP + iwo) - AF AQ

Solar gain

The solution for solar gain is analogous to that for ambient

iwlt iwgt
temperature; we set Tw = Xsw S1 e and Tf = XS S1 e and use
f
(A2.3-7) to show that
Xs - az(AG + 1wl) + a AF
w (AG + 1w1)(AP +iwg) - AFAQ

(A2.3-11)
as(Ap + iwl) + a, AQ

Y. T T lop O, + 1o - I iy

Heater output

The response to a constant heater output HO is a constant

temperature increase TH for the walls and TH for the floor. Using

W f

(A2.3-7), we get

AT - AT = a, H

P Hw F Hf 1 o

AG THf - AQ THw = a, H0
so that

a, A, +a, A a, A, + a. A

_ %1% T % T I s T M)
Ty = —f H, Ty = —% H, (A2.3-12)
W X f X
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Complete Solution

The complete solution for a given problem is the sum of the
homogeneous and inhomogeneous solutions. For a house whose temperature
floats freely (e.g. no thermostatically controlled heater), and with the
driving forces given above, we solve the equations (A2.3-7) separately
for the day and night conditions. The solutions are joined smoothly
using the assumption that the floor and wall temperatures do not change
discontinuously. Note that this form of solution is for static weather:
the same temperature and cloudiness conditions every day.

The boundary conditions are thus
T, (t = 0") = T (t = 24 hrs’) (A2.3-13)

td')

_ - +
T, (t = T, (t=t ")

<4

Te(t =0 ) = Te(t = 24 hrs™)

T

gt =ty = Telt =ty )

These four equations determine the four unknowns B1d B1n
Bod and B,y (Recall that the 'd' and 'n'.subscripts refer to day

and night solutions). These expressions are:
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Big #Byg v Oy - Xy ATy *Xg Sy + (Ty =Ty )
wd wn w wd wn
- B e_Aln n g e—AZn n
- “1n 2n (A2.3-144a)
=N t A, t iw t
1d “d 2d d d
Big ® * By © O - XAwn) ATy e
(A2.3-14D)
+ X Selwltd+(T - T, ) =B, +8B
S 1 H H In 2n
w wd wn
B., K ,+B,, K (X, - X. ) AT, +%c S, +(Ty; -T )
1d "1d 2d 24 Afd Afn A Sf 1 Hfd an
(A2.3-14c)
B -Aln no, g e-AZn n
In 1n 2n " 2n
ALt -A, Lt iw t
1d d 2d d d
B1d Kld e + B2d sz e + (XA - Xa ) ATA e
fd fn
(A2.3-14d)
iwl td
+ Xo S, © + (T - T, ) =8B _K B
Sf 1 Hfd Hf In 1n 2n " 2n

where td + tn = 24 hours
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These four equations can be solved by first using (b) to find B1n

and then using the result in (a). This produces an equation for an

which can also be used in the B, _ equation to express B, and B, in
in In 2n

terms of Bld and BZd' The results are

B Y, B,s +Y, B, + Y

In 1 71d 2 72d 3

i

Bon =Yg Byg * Y5 Bog ¥ Yg

where the Y's are given explicitly in Table 2.1
Using these expressions above in (A2.3-14b) produces an equation

of the form Bld Q6 + BZd QS + Q4 = 0,

with the Q's given in Table 2.1.

Analogously using the B1n and an expressions on (A2.3-14d) we get

Big Q * Byg Qg - Q=0

Thus
. U Q * Q O
1d - Q, Q5 - Q3 Q (A2.3-15)
o Q - Q By
5y =
2d Qs
Bin © Y1 Byg * V2 Bag * Y3
Bon = Ya Byg * Y5 Bpg * Y
where the Q's and Y's are summarized in Table 2.1 . This determines the

B's ; the complete solution for this problem can be written as
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Mgt Aoyt iw t iwt
S
Bia ® *Bya e "X g Mye = *XgSpe o Ty (day)
T = .
W -A, (t-t,) A, (t-t;) iw t
in d 2n d 0 .
B, e + B, e + Y AT, e + Ty (night)
Wwn wn
At At iw t iw_ t
1d 2d 0 1
BldKlde 4—B2dK2de * Xy ATAe *Xg S e + Ty (day)
T - £d £ £d
£ .
-A n(t—td) —Azn(t—td) iw t (night)
Banlne + B2nK2 e -fXA- e + TH
fn fn
: NW Nf 1 imot NS 1
T (t) = — T (t) + = T (t) + +— (AT, e ) + == S(t) + — H
R NR w NR £ NR A NR N O ©

R4 (p2.3-16)

Note that the solution for TR can change discontinuously, since
it includes terms proportional to S and H, both of which can change

discontinuously.

Discussion

The solution derived in this section applies to either a managed
or an unmanaged passive solar house subjected to constant weather
conditions day after day. Several variations are possible. For example,
if one wanted to find the response of the house to a day of clouds
following a succession of sunny days, one could solve for Bl and B2 as
an initial value problem using the new lower value for S;. That is,
one would set TW(O) = Tw(24 hrs ) and Tf(O) = Tf(24 hrs ), where '0’
refers to the beginning of the cloudy day, and derive new values of
B, and B2 based on the new value of Sl' One would then find

1

Bln and B2n for the "cloudy-day'" night. by solving the equations
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for night conditions and setting the initial values of TW and Tf equal
to their new calculated values at t = ty- This process is illustrated
in Sec. 3.3.5.

Further changes would include turning on the heater at some
time before sunrise to simulate morning warm-up of the building (but
this would involve matching boundary conditions at 3 times and finding
3 sets of B's), or adding the effects of a non-south facing window
(discussed in Sec. 3.5).

One should note that the coefficients X are actually linear
response functions giving the response of wall or floor temperatures
to solar or other excitations at a given frequency. They are similar
to the response functions derived in Sec. 2.4 for the continuum model
except that they describe the response of bulk material temperature
rather than surface temperature.

The X coefficients are shown here for walls and floor only; one
can also derive response functions for room temperature as influenced
by ambient temperature or sunlight using (A2.3-16). These response
functions XAR and XSR can also be derived from the continuum model
Eq. (A2.4-22), using lumped-parameter response functions in place of
the distributed-parameter functions implied in that section. Lumped

response functions are discussed in Appendix 2.5A.
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Trombe Wall/Waterwall

The Trombe wall or waterwall solar collector can be modelled
using lumped parameters in a way analogous to the direct gain system
solution just derived. Some of the variables (AP,AG, etc.) change
definitions in order to accommodate the Trombe wall solution.

A Trombe wall collector consists of a massive wall located
directly behind the solar collector window. Sun streaming in the
window strikes the Trombe wall surface and is either absorbed or
reflected; - the absorbed heat can either conduct into the wall material
or conduct into the air in front of the wall. This air in the channel
between the wall and the window is coupled to the room by natural
convection. Often this coupling can be altered by movable louvers at
the top or bottom of the channel. The heat flows in the Trombe wall are
illustrated in Fig. 2.7.

We model the surface heat balance slightly differently for the
Trombe wall than for other cases; the surface is now coupled to the
air in the channel rather than the room air. We assume this coupling is

linear. Thus the surface heat balance becomes

hwc(Tws_TC) - o S + Uwi(Tws - Tw) =0 (A2.3-17)

where ﬁwc is the heat transfer coefficient from the wall
surface to the channel air (Btu/hr-deg-F or W/°C),
Tc is the channel air temperature,
Ui is the lumped conductance into the Trombe wall,

(Btu/hr-deg-F or W/°C) ,
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T is the lumped wall temperature.

This equation replaces (A2.3-1b); it says that the losses from the
surface to the channel air plus the losses from sunlight (the minus
sign indicates that these are really heat gains) plus the losses

from the surface to the wall interior add to zero. Note that o = 1.0
since almost all the sunlight passing through the window is absorbed
on the wall.

We assume a constant chamnel temperature and constant wall
temperature as a function of height; actually there will be a
distribution of temperature. The channel air can then exchange heat
with the outdoor air by conduction through the window or with room
air through natural comvection. Natural convection is a very complicated
process; for this model we use a linear approximation and say that
heat transfer from the channel air to the room is given by GCR(TC - TR).
The heat balance for the channel air can then be expressed

as

hyo(Te = Tys) * U, (T, - T + Ugp(Te - Tp) = 0 (A2.3-18)

where ﬁcA is the heat transfer coefficient through the

collector glazing (Btu/deg F-hr).
This simply says that the sum of the heat losses from the channel air
is zero.
The room heat balance is altered in the Trombe model in two
ways: the heat loss from the room to the wall surface occurs

indirectly through the term GCR (TR— TC) rather than directly through



-224-

the term fiv(TR - TWS) and the heat flow through the back of the wall
affects the room and not the outside air. Thus the room heat balance

is

Uy (Tg - T + he (Tp - Tgd + Ugg (Tp = T * Uy (Tp - T = H+ 0pS
(A2.3-19)

where Gwo is the lumped conductance out the back of the wall from the
wall interior to the room (Btu/deg F-hr or W/°C).

We remind the reader that the heat leaving the back of the wall
goes to the room and not to the outside. It should be noted that the
back surface temperature of the Trombe wall is not equal to room
temperature; the back surface is coupled to the room using ﬁwR' Thus
in evaluating the lumped parameters for the wall, one should model a
wall insulated on the outside with a resistance of (ﬁwR)—l. Typically

~

UWR = area of wall x 1.5 Btu/deg F—ftz—hr. The value of the wall's
lumped parameter awo includes the effects of GwR as well as the effects
of the wall materials.

The second matérial surface to be modelled with lumped parameters
(as opposed to being incorporated into Gq and uR) can be either the
floor or the non-Trombe walls; we will consider the floor to be the
second surface for notational convenience. The floor heat balance is
still given by (A2.3-1a).

To solve the model, we use (A2.3-18) to express TC in terms of

the other temperatures:

=

T = (A2.3-20)

where
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We can use this to get an expression for wall surface temperature:

where U = = (A2.3-21)

We use these expressions along with (A2.3-2a) for floor surface
temperature to derive a new room heat balance analogous to (A2.3-3); the

expression has almost the same form as (A2.3-3) but the N's are

different:
T N, =T N + T.N,. + EL-+ SN, + T, N
R R W W i n S ATA
U
q
A “Rﬁ_ i (A2.3-22)
where NW = chA i WlA + ,WO
U Z(U.+U> U
q wl a q
O U e
f"??"/\ ~
Uq hf+Ufi
U i} h 2%
Nf(“‘“f*"m“(ﬂ}(ﬁ R >>
U U\ s+ U
q q w1l a
o ﬁ U o, N o
ST S Y
\Uq(Uwi +U)7% Ug, O
., 0 £ 25§
CA “cR wc CcA ¢cR
NA— 1+ — =
U x (U, +U)
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To derive the equations of motion, we keep (A2.3-5b) intact and

change (A2.3-5a) to

T o+ U - 0 (T -T) =0
Cw Tw N UWi(Tw Tws) * Uwo ( w R)

We use (A2.3-21 and 22b) to eliminate TWS and TR; the resulting

differential equations are:

g .0 ° N Ne
1 wi a ~ w T
T o+l = || = ) 0 e | T - g Te
w Cw <Uwi N Ua> wo R NR w R (A2.3-230)
0 N h U N A
= (?E Jui AL ]S+ cA PN I S S
S \C, 5 .0, RN c 5@ .0y RN/ A N D
v Uw1+Ua. R wi a R "q
~ o N
Ne) o Yo My M M Ugo (%8, s
Tor [ gll- ) = | Tem v W= BA\R, T/ At e\ T TN
£ £EN Ny £ R N R Cf he 'R
q
1 {»~ hwc cRwi 2%h
where >\R = 6‘— UWO + (AZ .3 )
W Z(Uwi+l})
1 Ugihe
and A = 7 = ~
£ Cw U + h
17

Note that these can be expressed in the same form as (A2.3-7ab) with
suitable redefinitions of the A's and a's; these redefinitions are
summarized in Table 2.1a.

The rest of the solution proceeds exactly as before; the

parameters defined above have new values but the functional relationships

are the same.
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To check this, consider a limiting case. Assume a perfectly

insulated collector (ﬁcA + 0) and look at (A2.3- 23a). In this limit,

U
U =2 cR , A, — WO 4 , and the equation simplifies to:
a = R C W
h +U W
wc TcR

U Ol A U N ﬂ
= (Aw+ é"") LIS g +<>‘w+ (‘3“’°>N3 S+<>\ +—~—g0>1—\%—TA
N h R v W R
(A2.3-24)

Next consider solving the same problem with the earlier set of equatioms.
We use (A2.3-5a) with (A2.3-2b) for TWS and use UWO(TW - TR) in

place of ﬁwo (TW - TA). This produces the identical differential
equation; in addition, the expressions for NR’ Nw’ etc. agree.

This shows that much of the algebraic complication in the Trombe
wall solution comes from the use of channel temperature TC instead of
pure series or parallel heat transfer paths in the direct gain model.

Thus the Trombe wall solution proceeds similarly to the direct
gain building solution with the insertion of the definitions in Table 2.la
for those in Table 2.1 ,

The lumped parameters for the Trombe wall are evaluated as in
the case of an envelope wall with insulation outside, with Ga substituted
for ﬁw ; and ﬁwr’ the coupling between rear Trombe-wall surface and

the room, substituted for Ur’ the conductance of the insulation. As

shown in Appendix 2.5A, the error in using lumped parameters to describe
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a Trombe wall is larger than in the case of an envelope wall, particularly
for weak convertive coupling between the air channel and the room
(ﬁcR small). For relatively thick walls (Eq. 1-2 feet of concrete) and
very weak convective coupling (ﬁcR << Gwo)’ the lumped parameter
approximation is unusable. However, for waterwalls, the lumped parameter

approach should be an excellent approximation.
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Continuously heated house

In this part we discuss the solution to the lumped parameter
model for a house kept at a fixed thermostat setting in which the heater
output varies with time. This solution applies only in a very cold
climate, when the heater is needed 24 hours a day. As we will show,
"yery cold'" will turn out to be unreasonable for a typical passive
solar design, rendering this solution of little practical interest.

We use the notation for the direct gain system described at
the beginning of this appendix. The equations of motion are the room

heat -balance (A2.3-3)

NpTp = NWTw + NTo + S—-H = NSS + Tp (A2.3-25)
q

and the differential equations (A2.3-5a and b)

C, T, + Uy (T, - Tu) + Uy (T, - T =0 (A2.3-26a)

~

Cf Tf + Ufl (Tf - TfS) + UfO (Tf - TA) =0 (A23—2653

In this case TR is fixed at the thermostat level Tt’ SO we

solve these differential equations differently than before. Rather
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than using (A2.3-25) to eliminate TR in the differential equations,

we set TR = Tt and use only the surface temperature equations (A2.3-2)

to produce:

'Uwo Aw o UWO
Tw + <Aw + E~—> TW-A Tt = — S + G TA (A2.3-27a)
W h W
w
ﬁ Ap O U
fo _ £ f fo
Tf + (Xf + E~—> Te Ath = — + TA (A2.3-27b)
£ he £

We next solve (A2.3-25) for H and then use the differential

equations for Tw and Tg to derive a single differential equation for H:

- UNS - U T (A2.3-28)

H=UNT, - UquTw - UN_T q A

qRt q f f

N

Differentiate this equation and multiply by (AW + -%9-); adding the
W

result to the equation itself, we see that

(A2.3-29)

We use (A2.3-27b) to replace Tf in the last term above, and then

differentiate the result:



~ A s
h, he
A Ny Uwo  Nf£ Ugo ; N R
L o " A —Uqu(W— f>f (A2.3-30)
U
where A = A+
W W C
w
U
fo
A=A, + =
f £ Cg

We then add Af times (A2.3-30) to itself to get the equatioh of motion

for H:
. . ~ . N Ay NeAgoge |-
H + (AW + Af) H +AWAfH = —Uq NSS + (AW + Af) NS + A * ﬁ S
- v W £
NA Ao N , N 0 N0
ww fw W fuf ~ pr W WO f7fo \.
h S |-
[\IsAwa M M ] U\Ta ™ ((Aw *h+r T—1* ¢ )TA+
. | W £

C C

A A _+NwaoAf _FNfoko
fw - £

)‘TA +Uq<AwAfNR"wawa"fowa> Te  (AZ.3-31)

" “'The homogeneous solution of this equation is

—Awt —Aft
Ale + Aze

Note that the decay constants are substantially different from the
free-floating temperature time constants. In general, they are faster
decays for example, for house #1 described later in this appendix,
the free-floating temperature decay times are 1/(41 hrs) and 1/(2.35 hrs)
whereas the heater decay constants are 1/(10 hrs) and 1/ (8 hrs). However,
the heater decay constants are still inversely proportional to the
heat capacities.
iwot
The inhomogeneous solution can be expressed as H + H,e +
iw.t iwot

1" for ambient temperature given by TA = ATAe and solar



-232-

S, el day
gain by S(t) =

0 night
However, this solution is only meaningful if it is positive definite.
This is because a negative solution for H(t) means that artificial
cooling is being provided to maintain a constant temperature, and rational
operation of a passive solar building would require allowing the
temperature Tp to rise instead. So the solution derived here is useful

iw t

1

only if HO > Re (HS e ) for all times.

We calculate Ho’ HA’ and Hs from (A2.3-31), the result is

A ( £ fo NeYwo >
H =0 |1+ — + (T, - T (A2.3-32)
N0 C. AU
This is a reasonable result, since —%—ég—— = ;ﬁ- jx£6£9:~A which for
£f Ug *e°f 7 Uso
Xfo >> Ufo is just Uf/Uq ; and analogously for the wall term,
so that Hoz <ﬁ+ ﬁf +ﬁw )(Tt - TA) which is the degree-day or

steady-state result.

We next compute H, and Hg:

A
NGO Ar NJUs A N 0 N U,
(Uz Apa s w-wo f N £ fo''w e A ens W WO N £~ 50
R o} w f CW Cf o\w ' f Cw Cf
Hy = oT,0, = > (A2.3-33)
(AwAf - wyT) FAw, (Aw'kAf)
N A Ao NoAeA o / NAoa Noigs)
/ £
Nw12—<NA hor _ﬁ_iﬁ___> _iwlw B T i
o s s W h, he W S hy hg

1% . .
WA -w2) + dwg (hy+he) . (A2.3-34)
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For house #1, we see the following departure from steady-state

results:
HO = 0.998 (Uq + Uf + UW ) (Tt - TA)
R ~ n —i(woallﬁ hrs))
HA = 0.946 (Uq + Uf + Uw ) ATA e
—iw1@L72 hrs)
H =

0.581 S1 e

Thus the steady-state heater output agrees to within 1/4% with
simple methods, while the response to ambient temperature is damped by
5% and phase-lagged by a trivial amount (10 minutes). The response to
sunlight is greatly damped, but only phase-delayed by 45 minutes. The
greater damping is to be expected; the sunlight falls on surfaces and
some fraction of it is used to heat the materials under the surfaces;
this portion is unavailable (at that time) for reducing furnace output.
However, the magnitude of these expressions shows that this constant-
thermostate solution is unrealistic for a passive solar house. For the
reference house described below with 250 ft2 of solar collector window
(1/6 of floor area) HS gets as large as 28,800 Btu/hr. Since HO =~ 539
Btu/°F-hr (AT) and Hl/AT = HO/AT we would require an ambient temperature.of
52° helow thermostat for the solution to work. For a typical indoor temper-
ature of 70°F, ambient temperatures would have to remain below 18°F. This
is unlikely enough in any North American climate, but even if it occurred,
the optimum passive house would likely have triple glazing rather than

double and extra caulking and insulation, reducing Uq from 450 Btu/°F-hr
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to about 300, thus lowering the acceptable ambient to below -1° F.
Thus the constant thermostat solution only is useful for cloudy days

or relatively small collector-window areas.

Reference House Description

We describe in this section a reference house which is used in
the text to illustrate some points numerically. The house 1s a
direct-gain passive-solar version of a conventional wood-frame concrete-
floor California single-story house. We describe it below and
evaluate its parameters for use in the lumped-parameter model.

We assume that the house is 50' x 30' with its short axis
oriented north-south. It has 250 ft2 of south-facing double glazing,
and 125 ft2 of glass facing the other three directions. The walls
are constructed of 2 x 6" studs on 24'" centers to allow the use of
R-19 insulation; the ceiling is also insulated to R-19. We assume
that 20% of the wall area is studs (typical for 2 X6 x 24 construction);
also 10% of the ceiling area and 15% of partition wall area. There
are 1920 ft2 of partition walls; corresponding to 150% of the envelope
wall area, as measured for one typical house by the author. The building
is sealed in normally tight fashion against air infiltration (not as
well as the Princeton retrofit of Ref. 25), and loses about 1/2 air
change per hour.

We model the windows, air leakage, and insulation cavities as
quick heat transfers, along with the doors. The wall area is 1280 £t2
gross minus 375 ftz for windows minus about 40 £t2 for doors, or

865 ft2. Thus ﬁq =
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on .2
walls 80% x 865 ft° x 0.05 Btu/°F-ft°-hr

35 Btu/°F-hr

coiling 90% x 1500 £t2x0.05 Btu/°F-ft-hr - 67
windows 375 ftzx 0.60 Btu/°F-ft2—hr = 225
-1 2
infiltration L hr x 8 ft x 1500 ft"x 0.018 Btu/ft3_°p = 108
doors 2 % 6% ft x 3 ft x 0.37 Btu/ft2—°F = 15
TOTAL Uq = 450 Btu/°F-hr

For the lumped parameter model, we divide the heavy materials into two
surfaces, floor and walls. The floor parameters' evaluation is

straightforward; we set Uf = 2.52 Btu/°F—ft2-hr and C.=9.64 Btu/°F—ft2

i £

for concrete. Thus U.. = 3780 Btu/°F-hr, C,. = 14,460 Btu/°F.

fi £
The walls are a little more complicated, since we are combining
the effects of two materials. We evaluate lumped parameters for wood
(studs) and then for (non-wood-stud-backed) gypsum board, and then
combine them.
Consider first the wood studs. The area in studs is 0.20 x 865 ft2 +
0.15 x1920 ft2 + 0.10 x 1500 ft2 = 611 ft2. We evaluate the lumped parameters
Ui and C for 6" wood, except that we hold off in evaluating UO until we
have added the effects of the gypsum board. Note that some of the
walls are partition walls.) When only part of the wall area communicates
with outside, we want (ﬁi—l + ﬁo—l)_l to equal the steady state heat
loss, and we determine ﬁo accordingly. For the 6" wood,
Ui = 0.564 Btu/°F—ft2—hr and C = 2.16 Btu/°F—ft2. Next, the gypsum
board has pcp = 13 Btu/°F—ft3 and K =0.0936 Btu/hr-deg F-ft. If the

thickness is 5/8'", the lumped parameters (for partition walls) are

Ui = 4,23 Btu/°F—ft2—hr and C= 0.646 Btu/°F~ft2. The areas (excluding
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2 0.80 + 1920 ft2 x 0.85 +

stud areas already counted) are 865 ft
1500 ft2 x0.90 = 3674 ftz.

Thus the wall lumped parameters are:

2
U, =0.564 Btu/°F-ft2-hr x 611 ft> + 4.23 Btu/°F-ft2-hr x3674 £t

= 15,890 Btu/°F-hr

2
c_ = 2.16 Btu/°F-ft2 x 611 £t2+ 0.646 Btu/°F-ft° x 3674 ft

= 3690 Btu/°F

To calculate awo’ we need the steady-state heat losses for
173 £t% of exterior wall studs. The U-value is K/d = (0.068 Btu/°F-ft-hr),
0.5 ft=0.136 Btu/°F—ft2—hr; thus total losses are 23.52 Btu/°F-hr.
So we take GWO = 23.56 Btu/°F-hr.

Finally, for a typical day, we assume that sunrise and sunset
are four hours before (after) solar noon, and that solar gain amplitude
S1 is 250 Btu/ftz—deg F x 0.75 transmissivity x 250 ftz = 46,875 Btu/hr.

. iwo(t—7 hrs)

Ambient temperature amplitude ATA is taken to be 10°F e
so that temperature peaks at 3 p.m. Usual assumptions for the a's

are that Op =0.70, o, =0.20, uR'=O.1O, although these assumptions are

often varied parametrically.
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APPENDIX 2.4: The Distributed Parameter Model

The distributed parameter model is an exact solution of the
diffusion equations (2.3) for each of the heavy materials and the heat
balance equations (2.1) and (2.2). The solution is computed in Fourier
transform space; that is, we calculate response functions for room
temperature (at a given frequency) as a function of the driving forces
(sunlight, ambient temperature) at that frequency.

In this section, we solve the model for a case with three
different material surfaces, floor ("f"), envelope walls ("e") and
partition walls ('"p'). We derive response functions relating material
surface temperatures to sunlight, heater output, and ambient
temperature. We then use these response functions to set up a simple
approximate solution for room temperature as a function of time.

Note that our choice of three surfaces is arbitrary; extension
to more surfaces is trivial.

We first write the equations of heat transfer for the model. For
the floor, we have the diffusion equation (2.3) and the surface heat

balance: (2.1):

2
Kf 3 Tf(z,t) ) BTf(z,t)
C ) 5 = (A2.4-1)
pcp £ oz ot
N BTf(z,t)
hf(Tf(O,t) —TR)-afS - Afo N o = 0 (A2.4-2)
BTt
where Tf(O,t) is the floor surface temperature and —Afo 57 | 2=0

is the surface heat flux into the floor.
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Treating the partition walls and envelope walls analogously, we have

2
K 32T (x,t) T (x,t
. P(X )_ p(x )

- (A2.4-3)
(pCP)p ) ot
. an(x,t)l
h (T_(0,t) - T,) - .S - A K ——— =0 A2.4-
p( p( ) R) o, o s (A2.4-4)
2
Ko 3 Te(y,t) 9T (y,t)
N 5 =~ (A2.4-5)
pe dy
N BTe(y,t)
he(Te(O,t)—TR) - oS - AK, _~—§§f——.yzo =0 (A2.4-6)

In addition we have the room heat balance

he(TR—Te(O,t)) + hp(TR—TP(O,t)) + hf(TR—Tf(O,t)) + Uq(TR—TA) =H+ap S
(A2.4-7)
We look for solutions to the partial differential equation (A2.4-1)

of the form (2.5).
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3
~
N

T
+
~—

|

-k .z .
— (Tf('*') + Tf(—) e £ > elw’t

or Tf(z,t) = [Af cosh k d (1-&) + B sinh k d (1- E)] e

iw(pC ) ‘, w(pC,)
f f .
where ke = __—ifil“_ = __iﬁél__ (1+i)

f £

iwt

£ = %—-, df = the floor thickness

These forms suggest that we look at a Fourier transform solution

k.2 -k .Z

Telzw) - Tf(+) e L 4 Tf(“) e T

or To(z,w) = Ag cosh kedy (1-8) * Bg sinh ked. (1-E)

So we will solve the Egs. (A2.4-(1-7)) in Fourier transform space and
drop the "~'" notation.

Equations (A2.4(1-7)) provide 3 differential equations and 3
inside-surface boundary conditions. We also require boundary conditions
on the outside surfaces. These will vary from case to case; we pick
some representative cases below and present the appropriate boundary
conditions.

Knowing the boundary conditions lets us represent a temperature
distribution (e.g. Tf(z,w)) with one coefficient. That is, we can

) )

represent Bf or Tf in terms of Af or Tf
For the floor, we assume a slab of masonry on top of the ground.
(If instead we wish to treat a suspended floor, the boundary conditions

are the same as for an envelope wall. Envelope walls are discussed below.)
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The properties of concrete are not that different from those of dry soil,
so for simplicity we will approximate the floor as a semi-infinite
1-dimensional slab of concrete. This approximation should be reasonable
for most frequencies since the penetration depth for a daily cycle in
concrete is only 4-6", or comparable to the actual slab thickness.
Perimeter insulation of the slab will minimize edge effects.

This approximation breaks down for zero frequency; at this
frequency we must assume some finite depth. However, the resulting
room temperature will be very insensitive to the thickness chosen.

The boundary condition for a semi-infinite floor is that Tf(z,t)
remains finite for large z. This requires Tf(+) = 0, so that

—kfz

Tf(z,w) = T,. e (A2.4-8)

£
w

For envelope walls, the outside boundary condition can be
approximated by assuming perfect thermal contact with the ambient air.
For a single-larger wall this means that Te(de,w) = TA(w) where de is
the thickness of the envelope wall.

We next look at a slightly more complicated case: an envelope
wall covered by a pure resistance of value R,. The interface between
the wall material and the insulation has a temperature Tint’ and the

heat flow through the insulation is given by

Q=A/R, (T - Ty (A2.4-9)

The boundary condition for envelope wall temperature is then

T (d,w) = T, . (A2.4-10)
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where de is the thickness of the envelope wall. We also require

conservation of energy at the wall/resistance interface, so

oT (w,y)
Q=-AK €

eve 3y (A2.4-11)

y=dg
We look for a solution of the form Te = A cosh kede(l—g) + B sinh
kede(l—E). Equation (A2.4-10) requires that Tint = A . Equating the
right-hand sides of (A2.4-9 and 11), we see that A=(RKKk)IB+T,

so that

Te(w,y) = (ReKekeTem + TA) cosh kede(l—E) + Tew sinh kede(l—E) (A2.4-12)

where we have set T = B.
ew

For the partition walls, the boundary condition embodies the fact
that partition walls are two-sided. If they are driven by equal solar
absorption on both sides, then the heat flux through the middle must be
identically zero. Thus for a half-thickness dp’ we have

oT

p
9x

x=d
- P

We can then write TP as

T@ = pr cosh kpdp(l -&) ' (A2.4-13)
where dp = the half-thickness of the wall.

This completes the discussion of boundary conditions; we use
the results (A2.4-(8,12, and 13)) to derive the solution to the model.

We first obtain expressions for the surface temperatures from the

surface heat balance equations, then use these results in (A2.4-7).
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For the floor, we use (A2.4 - (2 and 8)) to show that

A
.. hf TR + 0 S ) hf TR + Qg S
fw = 2 -
hf + Af Kf kf hf + Kf kf
o

- £

where Op = +—

£ Af

Also (A2.4-8) says that

T.(w,z=10) =T = (h, T, + Q. S) S
£ fw f 'R f hf + Kf kf

For the envelope walls, (A2.4- (12 and 6)) imply that

h T, +a S T

T - &R e, A(h coshk d -K k_ sinh k_d)
ew De De e e e e e e e
where De = (he Re Ke ke + Ke ke) cosh ke de +
h +R K2k?% sinh k_d
e e e € e e
- O('e
and Oy = A
[S]

(A2.4-14)

(A2.4-15)

(A2.4-16)

Then we can use (A2.4-12) to find Te(w,y=0); this equation says that

Te(w,y=0) = (RKkT + TA) cosh kede + Tew sinh kede.

e e e ew

Using the

previous expression for Tew , we can show after some manipulation

that

R Kk cosh kd + sinh k d
e e e e e e e

Te(w,y=0) = (heTR * 0O S) De

(A2.4-17)
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For the partition walls, (A2.4-4 and 13) say that

T = TR T % (A2.4-18)
w h_ cosh k.d + Kk inh k_ d T
P p SOST Ky T RpRp SISy

Since by (A2.4-13),T (w,x=0) = T_ cosh k d s
y ( ), T, (w,x=0) = T o4

cosh kpdp
h.T o
(hpTR + pS) o5k k d + KX sinh k.4
p pp * Tpp p°p

Tp(w,x=0) = (A2.4-19)

Before substituting the surface temperature equations (A2.4-15,17, and
19) into the room heat balance (A2.4-7), we note the similarity in form of
the three equations. Each computes the response of the surface temperature

of the ith material to TR"S’ and TA; in each there is a term of the form

Ry (hiTR + &iS) where Ry is a frequency~dependent linear response

i i
function. For the envelope walls, there is also a term R2 TA where
i

R2 is another linear response function. Examination of the equations
i

leading to this term (R2 TA) shows that any material surface whose
outside is coupled to thz ambient air will produce a similar term.

These response functions turn up again in Appendix 2.5A on
optimal evaluation of the lumped parameters. They characterize the
response of the continuum materials for this model; in other words, as
we shall see below, the entire effect of distributed materials on

room temperature can be expressed in terms of these materials response

functions. R1 has the dimensions of 1/U, while R2 is dimensionless.
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We thus abbreviate (A2.4-15, 17 and 19) as follows:

Tf(w,z = 0) = le(thR + ufS) + sz TA (A2.4-20a)
Te(w,y =0) = Rle(he TR + aes) + R2e TA (A2.4-20b)
T w,x =0 = R hy A2.4-20c
p( ) 1p (hp T * o, S) + RZp T, ( )
where R, =—1 R, =0 (A2.4-21)
1f hf + kaf ’ 2f )
1 )
cosh kede + R K sinh kede
eee
R, = : — (A2.4-21)
(he+ R-—->cosh kd_ + <Keke . ) sinh k,d_
e ee
1

R, = Te

2e 1 he ) .

(he * §_> cosh kede * <Keke * R K sinh kede
e e e e

. i cosh kpdp . _\

1p ~ h cosh k. d + K k_sinh k. d ’ 2p

P BpCOShR T R pp P

Note that R1 and R2 for partition walls are equal to the limit of the

expressions for envelope walls as Re ~» o and that R1 and R2 for the

floor are also equal to the limit of the envelope wall expressions for

d -+ », We finally substitute (A2.4-20) into (AZ.4-7) to obtain

~

TR<Uq «hy(1-h Ry ) + b (1-h Ry ) + hf(l-thlf)>

= S(aR + ae}%aRle + up}&)Rlp + uf]ylef) + TA(Uq + heRZG)-kH

(A2.4-22)
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We can express this as TR-A(w) = §.B(w) + TA-C(w) + H (A2.4-22a)

where A, B, and C are frequency-dependent building response

functions given by (AZ2.4-22).

We note several things about (A2.4-22). First, all the frequency-
dependence is contained in the materials response functions; the coefficients

in the equation (ﬁq, ﬁe, etc.) are all time-dependent. Second, the

response of the room to sunlight <%> differs substantially in form from

its response to ambient temperature <%) or heater output <%>. However,

the responses to temperature and heater output are usually about the same,

~ N

since h R, << U  for most buildings.
e 2Ze q
Third, the form of (A2.4-22) shows all materials entering into
the A,B and C coefficients in identical fashion. Thus adding another
material 'x' to the system simply adds a term ﬁx(l—thlx) to A,
adds axhXRlxto B, and adds hXRZX to Cf Extension of (A2.4-22) to
any number of materials is thus trivial to do; we can write the

equation for N materials as:

N

N N N
T, | U h.(1-h. R.. ] = [ . h. ]
R[ q+-q J( j h> SL% 7 23 % by Ryy
J j=1
~ N .
+ T [:U + h. R ] + H
Al "q ;g% j 2]

(A2.4-22b)

The form of (A2.4-22) also demonstrates an important linearity
in the building response: linearity with respect to illuminated area.

Suppose we have a surface, call it surface K, which receives an amount
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of sunlight aKS. Then it makes no difference to the building response

how this sunlight is distributed over the surface.
For example, suppose all the illumination falls over a part of
surface K. Then divide the material K into two subsections Kl and K,

with the former receiving all the illumination. Then ﬁK::ﬁK + ﬁK
1 2
while O = 0. The response functions Ry and R, are the
2
same for K, Kl or K2' The TR coefficient (A(w)) then contains the terms

and Oy = o

S|
he, (1-hy g Ry ) +ﬁK2(1-hK2R2K2) which equal (hy, +hyo) (1-hy Ry
this is the same as the term for the whole material K.

The S coefficient contains the terms hKl Oyq R1K1-+hK2(xK2]{1K2
which equals hK O RlK’ the old term for the whole material K. Thus
dividing the material K into illuminated and non-illuminated sections
has no effect on the response of the building.

This linearity can be understood intuitively as follows: exciting
temperature oscillations in material K at a certain frequency will
produce a given temperature profile TK(X). This profile has the same
shape regardless of the magnitude of the oscillationms. Thus illuminating
a part of the surface K with more sunlight will simply produce a higher
amplitude for the function TK(X) at that point, and proportionally
higher surface temperatures. Since heat transfer from surface K to the
room is linear in temperature, we can average over brightly illuminated
and dimly illuminated parts of the material K without changing the results.
Linear response to illumination simplifies the task of modelling

the building: it means we can consider all materials with equal thermal

properties (pCp, K, thickness, and film coefficient h) to be part of
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the same material. That is, for a building with 8" concrete floor and
walls, we can lump the floor and walls into a single heavy material,

and not worry about the distribution of sunlight between walls and floor,
or between the south part of the floor and the north part. (This may,
however, introduce an error if the film coefficients h are different

for walls and floor, or if the h's differ between the illuminated part
of the floor and the shaded part.)

We note further that in the derivation of (A2.4-22), all the
information about the heavy materials and their surface boundary
conditions is contained in the response functions. Thus this equation
is valid for the lumped parameter model as well as the distributed
parameter model, provided we interpret the Rl and R, functions as
lumped-parameter response functions: Lumped parameter response functions
are discussed extensively in Appendix 2.5A: they are of the form:

U. + U+ iwC
1 (o]

R1 = — 5
(U, + Uy + iwC) (h+U;) - U,
(A2.4-21a)
UoUi
R2 = — 5
(Ui + UO + iwC) (h + Ui) - Ui

(Alternately, a physically lumped-parameter material, such as a water wall,
would be modelled using these response functions.)

To show some of the information contained in (A2.4-22), we
look at its low frequency limit, noting that the semi-infinite floor
approximation may produce an error in the floor term. The w + 0 limit
of this equation depends on the limits of the response functions. As w

becomes small, k becomes small, so cosh kd + 1 and sinh kd =+ kd.
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U + 1/R
1 ‘ e e Ke
Thus R+ 7 , R, —+ — , Wwhere U_ =
1f £ le Ue/Re + Uehe + he/Re e de
U /R
R, > ﬁﬁ- . Ry e/he " , and R, =R, =0
p o e Ue/Re * Uh + e/Re f 2p
Then (A2.4-22) becomes:
- Ytot,e
— 2
TR(Uq * Ae Utot,e) - S<uR T % § . o, af) +H
solid,e
+ TA(Uq + A Utot,e) (A2.4-23)
where USolid o is the U-value of the envelope material-plus-insulation
_ -1 -1
Usolid,e - (Ue * Re)
Utot e is the U-value of the envelope including the inside air
. _ -1 -1,-1
film, so Utot,e - (Usolid,e *he )

Note that A(w = 0) = C(w = 0) which is required by thermodynamics:
the building cannot be at a higher temperature than the air unless it
is caused by the driving forces (eg. S). Also the coefficient of TR:(A(w))
is the steady-state heat transfer coefficient: the sum of the products
of U-values times areas. It is clear that if we modelled the floor

correctly we would get another term AfU in A and C and an analogous

tot,f
change in B; however, these changes would be small in magnitude.

We can see from the form of Eq. (2.4-22) a justification for our
approximation of using single-layer walls to derive the response functions.
Since for insulated envelope walls,heRZe << Uq while hj(l—thlj)*VGq, it is
much more crucial to evaluate R1 correctly than RZ' .R1 describes the
response of the surface temperature of a material to heat flow inputs on the

same side of the material. Thus it is most sensitive to the correct

description of the thermal properties of those parts of the wall near
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the inside surface. Details of elements near the outside surface will
be relatively unimportant, since they have little influence on the inside
surface, except at very low frequencies. But at zero frequency, R1 is
simply related to the U-value of the wall, as shown in (A2.4-23), so if
we get the correct U-value with a 1-layer-wall model, the R1 function
should be very closely approximated at all frequencies.

We expect that A, B, and C should have the property that A(w) =

A*(-w); this is confirmed by looking at the form of (A2.4-22 and 21).

These equations show that w appears only in the k's with k = \/iprp/K

If we change the sign of w, we change k to k*, which changes R, to

1
. * * *
R.* and this changes A, B, and C to A, B, and C .

1

The thermal performance of the building is governed by Eq. (A2.4-22).
When transformed back into the time domain, this says that

= fdw  or §<§E‘”g S(nwg) + f\g‘”g T, () + A%w) H(nwf)> (A2.4-24)

where the sum is taken over integral multiples of the fundamental
frequency we or else the integral over all w is used. Note that the
sum or integral is over all frequencies, both positive and negative.

We can convert to a sum or integral over positive frequencies
by noting that since S, TA’ and H are real-valued S(w) = S*(—w), TA(w) =
TZ(-w), etc. Thus for wp > 0, the sum includes the terms %{wp) S(mp) +
(%)* (wp) S*(wp). These terms add to 2Re<(§)(mp)8(wp)>. Thus the sum or
integral over only positive frequencies (not including zero frequency)
will be exactly half the sum or integral over positive and negative
frequencies (also not including w = 0). So we will take the Fourier

transforms of S, TA’ and H to be twice their normal values for w # 0 and

sum over positive frequencies only.
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The sum of Eq. (A2.4-24) can usually be truncated with only a
few terms. Ambient temperature can be described relatively well as a
daily sinusoidal oscillation on top of a steady-state value or a weather-
varying term. Higher harmonics of Wy = 2m/day, besides being relatively
small, will be fairly unimportant in determining TR’ since the TA
coefficient C(w) depends on R,, which decays rapidly with w.

Solar gain can, as shown in Ref. 21, be modelled adequately as a

sine wave during the day and zero at night. If we set

ISﬂ sin w, t 0s<t< ty

1

0 td<t<24hrs

with wltd = m and Fourier-analyze S in harmonics of 27n/day, we find

[ee]

that S = |Sllzoo: c. e implies that
w w -inw_t
0 1 od
S N 2_(nm )2 (1 +e ) now # wy
Cn = 1 0
Yo E§~ -
4 1 n, =W
w
)
%7 T
° 1

i inmot
So to write a sum over non-negative frequencies S =|S;] E dn e
n=0

we have
w 2w -inw t
0 1 od
2 w, -(n w )2 e ) "o F
17 o)
dn =
W EQ, i (A2.4-25)
T 1 nowo = w
4 - o
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To show that the dn's converge quickly, we calculate the first five

for t, = 7 hrs and td = 8 hrs.

d

n

ta

g6 sasem 9161 peee 1833 o7 -2 TABE o 26181 000 1.702
s 212 3820 1047E 972¢72:094 pyqe7T .0347¢%-094 021072094

As shown in (A2.4-25) for large n, dn @ 12.
n

the Fourier series at n = 3 will not lead to serious (~10%) error.

Thus we see that truncating

The response of the building to the simple diurnal cycle

described above is given by

B(nw ) 1nwot B(0) C(w ) iwot _ H
Tp(t) =5, lj;‘ K@) n® 5Ky %t Kwy A e T A TR
(A2.4-26)

where the real part of complex quantities is taken after multiplication.
Note again that A(0) is just the steady-state heat loss coefficient
for the building.

We have derived the response of the distributed-parameter house
to diurnal weather cycles; we next discuss the response to longer-
duration weather.

Weather patterns can be Fourier-analyzed into a number of
frequencies slower than W, = 2m/day. We choose one such frequency and

call it w and discuss the response of the building to a design weather
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cycle at frequency w . Typically W, ~ 2m/week or 2m/2 weeks. For
mathematical simplicity, we require that W, = mw, where m is an integer.

Temperature oscillations at frequency w —are straightforward

lu)wt

to handle; the Fourier series for TA has the additional term AT, e 5

A

so the series for TR has the additional term

W
ATA Kfa—j-e .
W W

where C and A are from (A2.4-22).

Weather varying solar gain can be described by a sinusoidally
modulated form of the daily solar gain function. We assume an average
amplitude of solar gain S and oscillations at frequency W, between

amplitudes of S + AS  and S - ASW. Thus we express S(t) as

(S + ASW cos wwt)51n wl(t— tsr) day (A2.4-27)
S(t) = )
0 night
where t is the time of the most recent sunrise.

ST

We next show that S(t) can be Fourier-analyzed into a small number of
terms which are related to dn’ the Fourier coefficients of the daily

solar gain function. The results are that the steady-state amplitude
is dj S while the amplitude at w, 1is d0 AS . For frequencies nw,

the amplitudes are dn S, while for frequencies nw * W, the amplitudes

dn
are - ASW.
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This is derived as follows: S(t) is the product of two functions:

an envelope function F(t) = S + ASW cos w t and a daily solar gain function

sin wyt day
G(t) = 0 night - Each of these functions can be written
as a Fourier integral: S(t) = i; dw s (w) elwt s

Fet) = [ do £w) %,  G) = f dwg(w) ¢, withs, t, and g
—00 -0

given by s(w) = é%l/.dt S(t) e_lwt and t and g given by analogous
expressions. We also know that g(w) = IS]cn 6(mon) from the daily
cycle analysis and that f(w) = S §(0) + 2w (6(ww) + 6(—ww)) from

inspection, where § is the Dirac delta function.
We are interested in finding s(w);we write an expression for it

as follows:

s(w) = _2% s(t) e Mt gt = ilﬁ.fpct) G(t) e Wt gt (A2.4-28)

We replace F(t) and G(t) by their Fourier expansions:

It

o . o .oy o .o
s (w) g%- ag et /P dw' et f(m')./~dw” et gl

Y-

1 b 1 [} 0 " 1" oo i(u)'+w”—w)t
=5 [ v f(m)jdw g [ dt e
= zl_wf dw' f(m')j do’' g(w') x 21 8(w'+w -w)

We use the §-function in the f(w') integral to get

co

s(w) = f dw) flo-o) g

—0o
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Using the explicit form of £, this says

0 _ AS,, )
s (w) =f d(") g (s s-w") + = (G(u)—w )+ 6 (0w —ww)>

—-00

Integrating the S8-functions over w' we find that

_ AS AS
s =8 gw) + 5 glwru) + - gl-w) (A2.4-29)

Since g(w) is a Fourier sum, s(w) can be expressed as a sum.

Equation (A2.4-29) says that we replace each term
iwnt . iwnt
[Sllcne in the sum for S(t) with the triplet S c, e +

c 1(wn-mw)t c 1(wn4-ww)t

ASW 7;-e + AS 7?-e . Note that this sum adds

to (S + ASW cos wwt) c, e ™ For positive w , wWe can replace

iw t
]Slidne " in the sum of positive frequencies for S(t) with the same

triplet (using d 1in place of c,). But for w, = 0, the triplet contains

-iw t
c W

one term at negative frequency (the term ASW e ), SO we must

2
2

first add all three terms. They sum to (§_+ ASW cos wwt) <, which is

equal to
— iw t _ iw t
Re (cO(S + ASW e )) = Re(dO(S + ASW e " ))
Thus the steady-state amplitude is do-g and the amplitude at W is
dO ASW, while the amplitudes at frequencies nw, and ot ow, are given

AS
= W .
by S dn and —§-dn respectively.
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We have now derived a Fourier-expansion for the weather-varying
solar gain function; we next look at how this expansion can be used to
calculate TR. We have shown that adding a weather-varying component to

B(w ) iw t

. W w .
TA simply a@ds the terms ATAW KTB;T-e to (A2.4-27). Adding a

weather-varying effect onto S(t) will replace the steady-state term

B(0) : < B(0) ,
I%JA{O) dO with the analogous term S A00) do' Tt will also add a
term at frequency W
w -
B(w,) iw t

d

By Ay %
W

In addition, it will replace each of the terms

B(nwo) inwot _.B(nwo) inwot
lSl'KIEa;T d e with a triplet S Kty d e

d (B(nwo+wW) i(nwgtw )t B(nw -w ) i(nwo—ww)t>
W

e oas Do W, p 0w
2 A(nwo+ww) A(nwo—ww

Since %-will generally not vary too much with small changes in

w (note that W, will be about 10% of nw, or less), we can approXximate

B(nwo) inw t

the triplet by (S + ASW cos wwt) Kfﬁagjhdn e , as shown below.

Suppose %-varies only slowly with w; so let

32 (B/A) 2>
2 W

B . .
= +
ww) ! (wn) (1 en) <1gnor1ng terms of order s

|
)
€
I+



-256-

Then the triplet is equal to

. B(nwo) ASW [( B(nwo) iwwt>+ < B(nwo) —iwwtﬂ

5 Aw ) T 772 Alnw ) (1+€n) e Alnw ) (l_en) ©
o} o} o}
inw. t
x d_ e ©
n
or
B(nwo) 1nw0t _ ASW 1wwt -1wwt 1wwt -iwwt
—d_ e S+ —> (e + e + € e - e
A(nwo) n 2 n
B(nw ) inw t
= ° 4 e O§+AS (coswt+1ice sinwt))
A(nwo) n w w n w

For € small, this is just the amplitude of S(t) for the day in question

(S + ASW cos wwt) times the daily response of Tp to S. To summarize
iwwt imot _
for weather cycles with TA = ATAW e + ATA e + TA and

(S + ASW cos wwt) sin wl(t - tsr) day
S(t) =
0 night

and with dn the Fourier expansion coefficients for the daily part of

S(t) (for non-negative frequencies only), then

3 B(nw) inw t o .
~ (3 o o B(0)
TR(t) (S-+ASW cos Luwt);{:1 A(nwo) dn e + S A00) dO +
B(w ) iwwt

+ ASW KTE;T'do e

. Clw ) dw t C(wo) iw t .
+ TA + ATAW A(ww) e ATA Kfagj-e + NG (A2.4-30)
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This equation is useful in evaluating the response of the building
to design weather conditions. The design conditions for checking whether
the house overheats might be that for ASW cos w t in phase with ATAQ;
we calculate the response of TR on the hottest day of the cycle. We
then determine the response on the coldest day, for the same weather
conditions. These two daily-temperature calculétions then bracket the
range of performance of the building under all expected weather conditions.

Design weather conditions could be determined in principle from
Fourier analysis of real weather data; but such analysis has not been
done to present.

The preceding analysis has been done for a 'direct gain'" building.
Extension to include Trombe wall structures is relatively straightforward

and is shown below.

Trombe Wall Solution

In this section we show how to include the effects of a Trombe
wall. Because of the constraints of the Fourier solution, the Trombe
wall must be completely unmanaged in this solution; that is, the degree
of thermocirculation from wall surface to room cannot change from day
to night, nor can the glazing on the Trombe wall be insulated at night.

We use the same parameters to describe the wall's coupling to the
room and to the outside as are used in the lumped parameter model,
Appendix 2.3. The Trombe wall surface is coupled to the channel air
through the film heat transfer coefficient ﬁTc' The channel air is
then coupled to the ambient air by GCA' which describes heat loss

through the collector glazing; it is also coupled convectively to the
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~

room air through the heat transfer coefficient Uep» which is chosen
to be a linear approximation for the natural convection heat transfers.

The back surface of the Trombe wall is then coupled to the room by

heat transfer coefficient UTR , which is typically just a film coefficient.

The temperature profile in the Trombe wall solves the diffusion

equation )
BT..(x,t) 37T, (%, 1)
Clr —v— = & —Z (A2.4-31)

It is subject to heat balances on its front and back surfaces, which

are analogous to (A2.3-17) and (A2.5A-21)

~ AT (x,t) |
hTC (TT(X = 0,t) - Tc) - O S - ATKT 3% (A2.4-32)
x=0
and
BTT(x,t) n
B Gy ced = Upp(Tyne - Tg) (A2.4-35)
T

where TC is the temperature of the channel air ,

dT is the thickness of the Trombe wall ,

Tint is the temperature of the interface between

~

the Trombe wall and the resistance 1/UTR.

(For an uninsulated wall Tin is just the back surface

t

temperature) .
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Note that we have made the approximation of one-dimensional heat
flow — that there is no temperature variation from bottom to top in the
Trombe wall or air channel. In fact, temperature gradients will exist;

however, they will not be important unless they affect the heat transfer

~

coefficients th’ UTR’ etc. If these heat transfers are really linear,

then by the arguments of the previous section we can take TC’ TT’ and

Tint to be averages over all heights and the solution will not be

affected.

The diffusion equation is solved by

Tp(x,t) = Ag cosh kpdy (1-8) + B sinh kT‘dT (1-8) (A2.4-34)

where & = x/dT.

Since Tint is the rear surface temperature of the Trombe wall,

U
. _ TR
TT(X = dT,t) = Tint' Then by (A2.4-33), BT = 3 KTkT (AT - TR) so that

(T - Tg) Upp

w
T.(x,t) = T | cosh ked (1-) + sinh k.d.(1-£)]  (A2.4-35)
T T, kpdp A K Ky 197

where T = A
TU.)
Before we substitute this into (A2.4-32), we eliminate TC using

T

the channel heat balance (A2.3-20); then using (A2.4-35) for TT and

its derivatives; we find that
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N ~ N N A ~
U_,h Q T /. U, U U _,h
T, = _ch Te % TA+5T- S+ 58 <UTR cosh kpdp + Tﬁ  sinh kpdp + — TC)
W 5 T T T ApKpke £
(A2.4-36)
~ ~ ﬁaUTR k
where DT = (Ua+UTR) cosh deT + ATKTkT'P ATKTkT sinh TdT
d /Z\ = h U + U
an “Tc * UcA UcR
n th (UCA * UCR)
U = —
a %
We use these last two equations to show that
U_,h U _h
_ _ _cA'Tc cR ' Tc
Tp(x=0) = : Ryp Ty * Op S Ryp # <R2T *“‘ZA— R1T> Tr
(A2.4-37)
Urp
cosh deT + KTkT sinh deT
where R =
1T UUrg
(Ua+UTR) cosh deT + <KTkT + KTkT >51nh deT
UTR
Rop = TR

a TR

(Ua+UTR) cosh deT + <KTkT + KTkT > sinh deT




-261-

have exactly the same form as (A2.4-21)

Note that R and R2T

1T

for R except that U

le TR
The first replacement is a matter of definition only; both UTR and 1/Re

replaces 1/R, and U  replaces h,.

and R2e

are the conductances away from the back wall surface.

This completes the derivation of Trombe wall surface temperature
as a function of materials properties; we use the result in the room
heat balance to obtain the solution for room temperature. The room heat

balance is slightly altered to take into account the Trombe wall;
instead of A2.4-7, we have:

~

ﬁe(TR-Te(o,t)) . hp(TR -Tp(o,t))+ he(Ty - To(0,1)) Gq(TR-TA)

(2.4-38)

+ U p(Tp=T ) + Upp(Tp-Ty ) = opS + H

This equation is the same as (A2.4-7) except for the addition of

the last two terms on the left-hand side. We can write these terms as

~ ~

”~

1) U h
n o - cA cR Tc _
(UcR+uHQTR‘UcR< Tyr—=Tp+ 7 Tplx= >
by X X
U .h 0.0 ﬁ h
~ cAVT 1 ~ cR
D |~ B Ta gz-s + Ty o < Upgeosh kpdp + pip—— sinh kydp+ —
z T T T TKT T z
using (A2.3-20) for TC and (A2.4-36) for Tint = TTw' Then with (A2.4-37)

for TT(X=O), we can derive the relationship between TR’ TA’ S, and H as:
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TR Uq4-he(1-Rlehe) + hp(l—Rlphp)-Fhf(l—lehf)

U h.
n 1 [ cR Tc ]
* U 1'E<UcR+ AreRort—5— R4r )

U_h

~ ! 1 cR Tc

Upp {1~ UTR<R1T ) 3 R2T>
TR . (A2.4-39)

+

UthTc,

S BOLR * hOgRyg + hpapRy, + heOpRyp + o < 3 R1T+R2T>€

UcA UthTC R 4 ey
Rop* 1T

)}

1 . . .
where R1T is RlT with UTR and Ua reversed. We note that for nonlinear
convection (ﬁcR dependent on TC—TR) we can solve for the steady-state

part of (A2.4-39) using an exact expression for convective heat transfer

and use the linear approximation for w #0 terms only.

The form of this equation is slightly messier than (A2.4-22);

U.nh
. . . . . cR'Tc
instead of just R1T or RZT’ it contains terms like <R2T + _——f__'R1T>'
It also contains the new function R.,.. The response of the surface

1T

temperature of a material to heat flux on the same side of the material
is described by Rl; the function R; describes the same thing for the
surface on the opposite side of the wall. Since the room is coupled

to the back side of the Trombe wall, the use of the RiT function is

not surprising.
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So for a Trombe wall building, we use (A2.4-39) above in place
of (A2.4-22) to derive A(w), B(w), and C(w); the TR(t) equations
(A2.4-26 and 30) still are valid with these new A, B, and C functions.

For a non-convecting Trombe wall (ﬁcR = 0), these expressions
simplify considerably, and the A, B, and C functions of (A2.4-39)

compare to the earlier form (A2.4-22) as follows:

~ 1

Aw) = (.... old terms .... + Urr (l—UTR RlT))

B(w) = (.... old terms .... + Ol RZT) (A2.4-40)
h, 0

Clw) = <... old terms .... + X—IE_J¥£_ RZT)
e * Uea

These are not quite analogous to the forms for interior walls,
due to the appearance of RiT in A(w) instead of RlT’ and due to the
use of R2T in B(w) rather than RlT' However, the new term in C(w)
is analogous to that for an envelope wall.

All the material derived above for Trombe walls works equally

well for water walls, with the lumped response functions (A2.4-21a)

replacing the continuum functions (A2.4-37).
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Two Layer Wall Response Functions

In this section we derive expressions for the response functions
R1 and R2 for a two-layer wall in which both layers have large heat
capacity. An example of such a two-layer material is a concrete floor
with wood surface. As shown below, the form of these response functions
is not dissimilar to the form of the single-layer-plus-resistance
functions.

Consider a two layer wall characterized by Kl’ kl, and dl, for
the inside layer and K2, k2’ and d2 for the outside layer. The solution

to the diffusion equation for each layer is given by

Tl(w,xl) = A cosh kldl (1-£) + B sinh kldl (1-8)
(A2.4-41)
Tz(w,xz) = C cosh kzdz(l—c) + D sinh k2d2 (1-0)
X X
_ 1 _ 2
where £ = e z = =

The boundary conditions are, for the inside surface, the surface heat

balance (1)

+8' - h T,(0) =0 (A2.4-42)

where S'* Zh T, + a8

For the interface, we have continuity of heat flux:

oT
K, 1

1 3%, (A2.4-43)
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We also have continuity of temperature at the interface (e.g.

perfect thermal contact) or
Tl(dl) = TZ(O) (A2.4-44)

Finally, we have perfect thermal contact between the outside

surface of layer 2 and the outside air.

Tz(dz) =T (A2.4-45)

A

Using (A2.4-41) in (A2.4-45) we see that C = Then (A2.4-42)

TA.

requires that

S' = A(h cosh kldl + Klk1 sinh kldl) + B(h sinh kldl + Klklcosh kldl)
(A2.4-46)
while (A2.4-42) says that
Klle = K2k2TA sinh k2d2 + szzD cosh k2d2 (A2.4-47)
Finally, from (AZ2.4-44), we get
A= TA cosh k2d2 + D sinh k2d2 (A2.4-48)

We solve the last of these equations for D and use the result in
(A2.4-47) to express B in terms of A and TA' This result is then used

in (A2.4-46) to obtain the following expressions for A and B:

(A2.4-49)

A= S . A / cosh k2d2 , K k h sinh kldl
R S (A R T Klkl STk K,d,
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. S K2k2 Coth Td - TA o h cosh kldl . sinh kld1
Den Klkl 272 Den 22 Klkl sinh k2d2 sinh k2d2
( szzh \
where Den = (h + Kok, coth kzdz) cosh kld1 + \Klkl-+ Klkl coth kzdz) sinh kldl'

Then the surface temperature TS = A cosh kld1 + B sinh kldl from
(A2.4-41). Using the expressions (A2.4-49) for A and B we find the
response functions R1 and R2; they are:

K2k2
cosh kldl + KIEI—coth k2d2 sinh kldl

1 K, k,h
2 .
(h + K2k2 coth k2d2) cosh kldl + (Klkl + KIEI——-coth k2d2> sinh kldl

Kk,
o sinh k2d2
2 = K k.h \
(h + Kyk, coth kyd)) cosh kydy + (Kjk + K coth kzdz) sinh kd;

(A2.4-50)
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Radiative Coupling Solution

In this section we derive the modifications necessary to precisely
calculate convection and radiation exchanges within a building. Previously,
we assumed that each material surface was in thermal contact with the
room air through a coupling coefficient i; which combined the effects
of convection and radiation.

In this section, we model the more realistic case where the

1
3

~N
surface j is coupled to the air through the convective coefficient hJ
and is also coupled to each other surface i through the coefficient hij'
This radiation coefficient includes a geometric form factor.

The surface heat balance for the jth surface is then modified

to read:
~y N ~ Ay N ~ aTj
h, T, +o, S5+ h,. T . -h. T_. - h,. T . - A.K. == = 0
j R j ;E% ij “si j "sj] g;é ij "sJ i) ox
i i x=0
th (A2.4-51)
where TSj is the temperature of the j surface and N is the
number of material surfaces in the building.
We can simplify the notation somewhat if we define h; = hjj and
N ~ ~
3 h.. = h, .
,tot
01 1) j,to
Then we have
~ N A BTj
hjj TR ta; S ;;i hij si j tot "sj AJKJ X -0 =0

(A2.4-52)
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We see that (A2.4-52) is exactly the same as previous heat
balances except that we have the term ﬁ.ka + ajS +i§% ﬁijTgi
in place of ﬁj TR + ajS. (We also have ﬁj,tot TSj instead of
hj TSj

the response function equations come out analogously, and

, but these expressions should be numerically equal). Therefore

N
Tsj = le (hjj Tp * & S + Eg% hij T o) + sz Ty (A2.4-53)
i#j
where le and sz have the same form as before, except that we replace
nj with hj tot

The room heat balance for this model is

N ~
> h..
717

j (Tg = Tgy) + Uy (T = Ty) = H (A2.4-54)

where the term Op S is missing from the right-hand side because we can
no longer assume that sunlight falling on a light surface is absorbed
directly into the room air. (Some of it is radiated to other surfaces
instead). We now have to model light surfaces explicitly.

Previously we used the surface temperature result analogous to
(A2.4-53) to replace TSj in (A2.4-54). However, in this case, (A2.4-53)
is not an expression for TSj in closed form. It is actually a system
of N equations for the N surface temperatures, which must be solved
before substitution into (A2.4-54). We solve the system (A2.4-53)
formally in the following manner:

Represent TSj as a column vector Is' We can then write (A2.4-53)

as a matrix equation
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(A2.4-55)
where Te is a column vector whose jt component is
R..(h,. T, + 0, S) +R,. T
1555 Tr 7 %5 9 2] A
and M is an N x N matrix whose ij component 1is
le hij and whose diagonal elements are all zero
Solving (A2.4-55) formally, we have
= (1 - M)‘l (A2 4—56#)
~5 ~ ~ ~eq )
where 1 is the NxN identity matrix; or
N 1 ~
TSj = 2: (i - g) N Rli(hii TR * 0y S) + R2i TA (A2.4-56b)
1=1 Jji
Let L = (1 - M)_1 ; then we can write (A2.4-54) as
./\ N/\ N
TRqu+Z

(A2.4-57)
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This solution replaces (A2.4-22) for the relationship between
TR and the driving forces. It is apparent from examining (A2.4-57) that
the amount of computation needed to evaluate it is orders of magnitude
larger than the simpler equation. For our simple example of a building
with envelope walls, partition walls, and floor, we would have to add
a fourth surface — light furniture — and set N = 4. We would then have
to calculate radiation exchange form factors (ﬁij) between these four
surfaces, and then invert 4 X 4 matrices for each frequency of interest

(say, w = 0, w o, W 2wo, Swo) or 5 matrices. The sums to produce

o?
A(w), B(w), and C(w) would be double sums of 16 terms compared to 3 in
the simple case.

In addition to the extra computation, the intuitive clarity is
compromised in (A2.4-57). There is no obvious way to see how a change
in a response function will affect the building performance, since we

cannot intuitively invert 1 - M . For these reasons, we do not compute

solutions using the precise thermal radiation balances.
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APPENDIX Z2.5A: Simulating Distributed Walls
with Lumped Parameters

Fourier transform techniques allow the exact solution of the passive
solar house model for distributed walls. However, these techniques are
practical only in those cases where the parameters of the house are not
time-dependent. For time-dependent parameters, such as night insulation
of the windows, it is much simpler to solve the model using lumped
parameters. This section discusses the derivation of lumped parameters
which approximate the behavior of a distributed wall.

The most important elements of the house to model are those which
receive and store solar energy (e.g. a slab floor). At the surface of
the massive solar receiver, the temperature TS will be determined by a
heat balance between solar gain, convection/radiation to the room, and

diffusion into the receiver. Call the receiver a "floor" although the

analysis would be the same if it were a wall. The heat balance of the

surface is given by

BTf(z,t) R
Afo — sy o + ufS + hf(TR~—TS) = 0 (A2.5A-1)
where Af is the area of the floor

Kf is the conductivity of the floor

ﬁf is the floor surface film coefficient times the floor area
TR is the room temperature

TS is the floor surface temperature
afS is the solar gain on the floor (in Btu h_1 or W)

A is the distance into the floor material

In a lumped model, this heat balance 1is given by
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0 - h - = .5A-2
Ui(Tf TS) + qf53+ hf(TR TS) 0 (A2 )
where ﬁi is the heat transfer coefficient into the floor
T is the floor thermal mass temperature.

£

The lumped-model floor will exchange the same amount of heat with the
house as the distributed-model floor provided that the surface temperature
is the same in both cases. This also implies that the amount of heat
stored is the same in both models.

The heat balance equations (A2.5A-1) and (2), together with equations
describing the details of the walls or floor, will give the floating
surface temperature TS as a function of the driving forces of solar gain
(S) and ambient temperature (TA). We can expect to find different
response functions for TS in terms of TA and S for the distributed model
and for the lumped model. If we can find values of the lumped parameters

~

(Ui, the heat transfer coefficient between the floor surface and the
floor heat capacity; ﬁo’ the heat transfer coefficient between the floor
heat capacity and the outside; and C, the floor heat capacity) which
allow the Iumped-parameter response functions to approximate the
distributed model response functions, then we can use these parameter
values to simulate the heat transfer of the distributed floor or wall.

Since S and TA are independent excitations, we expect that in
Fourier transform space, the equation for T. will be

S

TS = Rl(w)S + Rz(w)TA (A2.5A-3)

where ~ indicates Fourier transform, and R1 and R, are the response
functions of Section 2.4; so the simulation process will involve

calculating Rl(uﬂ and Rz(m) for lumped and continuum cases, and choosing
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lumped parameters which allow R1 and R2 to be approximately the same over
the relevant range of frequencies.

"The relevant range of frequencies" is from w=0 to w= 2w/1 day x 3.
The lower limit is important because there is a fairly large DC component
(or at least yearly component) to the response of the house. The
fundamental frequency for solar gain and ambient temperature is usually
one day, while the first few harmonics are necessary to describe day and
night solar gain conditioms.

We will discuss several cases of walls to be modeled. The simplest
case is the single-layer wall of finite thickness. We then model a semi-
infinite wall. The results for the semi-infinite wall are extended to
cover moderately thick walls. The moderately thick wall solution will
be compared to the thin-wall solution.

We next discuss insulated walls: that is, walls of a homogeneous
material with nonzero heat capacity covered by a pure insulator. There
are two cases of interest: insulation outside (e.g. concrete block with
exterior foam insulation) and insulation inside (e.g. carpeted slab floors).
In addition, we look at simulations for interior walls. To avoid compli-
cation we model each element (floor, walls, etc.) separately; that is,
we do not consider the properties of the walls in choosing the lumped
parameters for the floor. The validity of this approach is demonstrated
by the form in which the response functions R1 and R2 appear in (A2.4-22);

each element enters independently.
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Thin Single-Layer Walls

Calculating continuum and lumped response functions.

We first look at envelope walls or floors, and calculate R1 and R,
for the continuum and lumped models. Sunlight is absorbed on the inside
surface of the material and heat is lost to ambient from the outside
surface.

For the continuum model, the diffusion equation for the temperature

distribution Tf(z,t) is

2
3T (2, 1) 3°T,(2,1)

pc. ——— = K
P ot f 822

We assume perfect thermal contact at the outside, so for a floor of

thickness d,

T (z=d,t) = T,(t) . (A2.5A-4)

Solving the diffusion equation in Fourier transform space, we get

z . z
T, = A cosh k.d(l- %)+ B sinh kd(l- 3)
with - (A2.5A-53a)
iwpe
Y Nais 2
f
Kf
Equation (A2.5A-4) requires A to be equal to TA’ while (AZ.5A-1) requires
that
. A kaf51nh kfd + Ixfcoﬂlkfd . ufS + thR
A hf suﬂ1kfd + kafcosh kfd h£51nh kfd + kafcosh kfd
o (A2.5 -5b)
where ag = ocf/Af

We note that surface temperature is given by TS = Tf(z:=0,t), so that

TS = TA cosh kfd + B sinh kfd
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Using expression (AZ2.5A-5b) for B, we obtain the result that

Tg = Ry 0.5 + RyT, + Ry (hTp) (A2.5A-6a)

where R1 and R, are given by (A2.5-6b) below.

The last term in this expression comes about because when we look at only
one heavy material, the room temperature is indeterminate and must be
considered as a separate independent excitation. This is not a problem

since the response of T, to T, is given by the function h which is

S R le
proportional to Rl; thus if we match R1 correctly in the lumped and

distributed models, we have automatically modeled the response to TR

correctly.

It should be noted that R1 is not the response of the surface

temperature T, to solar gain, since solar gain affects T, indirectly

S S

as well as directly. R1 is the response of T, to a unit heat

through T S

R

flux input on the inside. For this particular case, the heat flux is

given by h S, but R, characterizes the surface temperature's

£ + O 1

response to any heat flux on the surface, just as R2 characterizes the

response to temperature input on the opposite surface.

In obtaining (AZ2.5A-6a) we find that
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sinh k_.d
Rl = f 0
c kaf cosh kfd + hf51nh kfd
(A2.5A-6Db)
R - Keke
Za kaf cosh kfd + hfsinh kfd

Note that the subscript c¢ refers to the continuum model. Note also

that the R1C response function has dimensions of hr—ft2—°F/Btu or m2—°C/W,

while R2 is dimensionless.

Next we look at the lumped parameter wall. The inside boundary
condition is (A2.5A-2); the outside boundary condition is contained in

the differential equation for Tf:

CeTe + U (Tp-Tg) + U (Tg-T,) = 0 (A2.5A-7)

A)
Note that Tf is an "artificial" temperature; it is the lumped temperature

which simulates the continuum temperature Tf(z,t). It is not a spatial
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average of Tf(z,t); thus it cannot be measured or compared to anything in
the continuum model or in the real world. It should, however, lead to the
correct values of Tg and other measurable quantities.

Solving (A2.5A-7) and (A2.5A-2) in Fourier transform space, we get

~ . I’A ~ - A ~ A ~ B
Tf(lef + Ji +UO) Ui'TS + UOTA_ (A2.5A-8a)

—UiTf + (hf4-Ui)TS = o5+ h,.T (A2.5A-8b)

Solving this gives

, GO-PG. +iwCf o 0.0
T = A A - ~ ~ ~2 (thR +a
(UO-FUi-+1wa)(hf-kUi)—Ui

.U
io

N ~ . N e I\2
(UO+Ui+1wa)(hf+Ui)—Ui

—32

g) +

£

(A2.5A-9a)

We can identify the first coefficient as the lumped version of R1 and

the second as the lumped version of R That is, writing (A2.5A-9a) for

. 2 '
a unit area of floor,

Ui-+UO-+1w £

Ry, = — - (A2.5A-9b)
(Ui-+UO-+1wa)(hf-+Ui) —Ui
Ui U
Rzg' = — - (A2.5A-9c¢)
(Ui-+UO-+1wa)(hf-+Ui)-Ui

where Cf = Cf/Af.

To sum up, we have derived an expression for the Fourier transform

of the inside receiver surface temperature T. in terms of the driving

S

functions TA and S. We have done this for both the continuum and the

lumped models. We next attempt to find values of ﬁo, ﬁi’ and C. which
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allow the lumped Ry and R2 to most closely approximate the continuum

functions over the appropriate frequency range.

Matching the response functions.

We illustrate two methods of matching lumped to continuum response
functions, one of which is applicable to thin walls, and the other to
thick walls (which is discussed in the next section).

The first method is the one used by Robert Sonderegger in his

(1

models of Twin Rivers, New Jersey houses; it is also a standard

(2) We look at the two functions R1 and R2

as (complex)-frequency-dependent functions and locate their poles and

approach in system dynamics.

zeroes in the complex plane. The lumped function Ry evidently has

2
its only zero at
U +U
. o 1
iw = - ——
Ce
and its only pole at
1 U
1w = E—' [H—TU— - (UO+Ui)i| .
£ £f 1

R, has no zeroes and the same pole as Ry .
25 L

In contrast, the continuum functions have an infinite number of

poles and zeroes. We can see these by expanding the numerator and

3
denominator of Ry and R, as infinite products:( )
c c
1 i (k .d)?
g Sinh k.d T [1 L £ ]
R, = £ _ n=1 n2m?
1 K h T K dh.\.® (ked)?
f £f . £ f f
TI-COSh kfd + E;g-Slnh kfd By <1-+ Kf)J:E [1 +-——:?——]

(A2.5A-10)
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where p = 1is the nth solution of tanp = q%1Kf/dhf.

The numerator of ch is a constant, while the denominator of ch is
the same as the denominator of Rlc: thus we get no new poles or zeros
from looking at R, .

c

To make use of (A2.5A-10) in choosing U;U, and Cps we approximate
the exact function Ry by following three rules:

1) The steady-state conductance ((Ui)_1-+(UO)—1)"1 is

equal to the steady-state conductance in the continuum
model (Kf/d). This ensures that the limit of R1 and
R, as w0 is the same in both models.

2) The first pole of the continuum R, occurs at the same

frequency as the only pole of the lumped Ry-

3) The first zero of the continuum R1 occurs at the same

frequency as the only zero of the lumped Rl'
These conditions say that the truncated product for R will approximate
the exact function for Rl’ if they agree for w=0 and if the interesting
range of w (0 £ w £ 3 x2m/day) is smaller than the second pole or zero
of the expansion. If w<<p, and z, we say the wall is '"thin." If
w2 P, and z, then the approximation breaks down and we treat the wall
as "thick" (see the section on thick walls for numerical definitions of
thick and thin).

This can be understood intuitively in the following way: If a
function F of a complex w has an isolated pole at w=w, on the positive
imaginary w axis, thena graph log F vs. log w will be approximately constant
for w‘0<wp and will have a derivative of -1 for u)>>ub. If it has an

isolated zero at W=, it will be constant for u)<<(uz and have a
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derivative of +1 for w>>w,.

If the zero occurs at w, slightly larger than wp, the function log F
will start to decline with the derivative tending to -1 for w3>wp but will
flatten out again as w2>wz. Thus knowing the location of the poles and
zeroes of F will show where F(w) changes from constant behavior. The three
conditions above require that Rlz and Rlﬁ approach the same constant
at =0 and that they have the same shape for w smaller than the zero of
Rl' For larger w, the additional poles and zeroes of Rlc will allow it
to decrease with w while Rlc tends to a finite constant.

These three conditions lead to three equations for the lumped

parameters:

L, 4 (A2.5A-11a)
Y% Ui Kf
2

p. K U.

- 1_f2 - L <__1._ - [u_+u,] (A2.5A-11b)
mﬁd Cf hf+U
'rrsz .

- = - — (U. +U.) (A2.5A-11c)
c dZ C O 1

It should be noted that all poles and zeroes in both the lumped and
continuum models fall on the positive imaginary w-axis, and provide
that Gi’ﬁo and C are real. Thus this method gives real-valued lumped
parameters.

Solving (AZ.5A-1la,b,c) gives the following rather messy expressiéns

for the lumped parameters
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~ 2 A K 2 A
T £f ('rr >
U, = = +(E - 1)n (A2.5-12a)
i 2 d 2 £
pl Pl
2
AgKe < P, o
U, = d > u £lele (A2.5-12b)
1 N :
<1 - ?) (KeAg + dhp)
2 ~ A
d“pc_(U. +U ) (U. +U0 )
c, = pi ol _ lu o 1 Ceq (A2.5-12¢) .
2 K¢ £ W

where Cfo is the bulk heat capacity pdeAf. Note that these are

expressed in terms of the extensive parameters hf and Afo, and are

proportional to area.

We look at the limiting behavior of these quantities as d+0

(thin wall/floor), and find that
K
.
Ui > 4 4 - 4Uf

where Uf is the steady-state "U"-value of the floor , while

Uo + 4/3 Uf

Thus the wall has the correct static U-value, but 3/4 the resistance is

on the outside and only 1/4 on the inside.

16 A_.dpc
£ P 16 ¢ =~ og.540C

C. » =
f 32 302 fo fo

where Cfo is the static heat capacity of the filoor (=(dAf)(pcp)).

For thick walls, d + « and P, - T,

A_K

N £f
R
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Cp > Cp/m >

Here all the resistance is on the outside and Cf becomes infinite. This
is not realistic behavior, and as we will see, this method breaks down
for "large" d.

How do the "simulated'" lumped response functions ng and R22
compare to the exact continuum functions? R1C has alternating poles
and zeroes along the positive imaginary w axis, while Rlz has only one
set of poles and zeroes along that axis. ch has only poles along the

positive imaginary w axis, while R2 has one pole. Thus all four functions
L

start out at w=0 with zero slope, and of course, Ry = R1 and R, = R2
C G

for w=0. As w gets larger, the slope of !R| vs. w becomes negative.

L

The continuum R, declines steadily with w; the lumped function,
while also monotone decreasing starts to level out for w larger than the
zero, and tends to a finite constant and zero slope as w=*. So the
continuum R; looks 1ike"'-\\" while the lumped function is S-shaped,

" ’—\\§*'H The agreement will be good if the lumped Ry flattens out
at w>> Smo.

Both the lumped and continuum Rz's begin to decline as w increases,
but the slope 92nR/3%nw tends to -1 for the lumped R2 and continues to
become more negative for the continuum R,. This occurs because each
additional pole of R, makes the slope more negative, and ch has an
infinity of poles where R, has one. Good agreement will be obtained

L

when the second pole of Ry occurs for |w| > 3uw,.
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The agreement between the exact R1 and R2 and the simulated functions for
4-inch wood is shown in Fig. 2.8 and Table 2.5. As seen, the agreement is
good, despite the fact that 4 inches of wood is not especially thin.
For 2-inch concrete the agreement is even better, as shown in Table 2.4

For thicker walls, the method starts to break down. Tables 2.6 and 2.8
show R1 and R, for two simulation techniques. In the pole-and-zero method
IR;| is 20% off for w = 2m/day and 50% off for w = 2m/8 hrs. IRZI is

even less accurate. Finally, for a 20-foot concrete wall (or 20 feet of

concrete slab floor plus dry soil) the agreement is very poor (Table A2.5-1).

Semi-Infinite and Thick Walls

As we approach the limit of the semi-infinite wall, a large number
of poles and zeroes occur at low frequencies, so the pole-and-zero
approach is useless. Instead we choose Gi and Cf (Go is now zero) in
such a way that R1 is exactly the same in lumped and continuum models
at a particular frequency. The frequency at which the match occurs is
arbitrary; we choose w = 2m/day for the match frequency because most of
the spectrum of the driving functions (sunlight and ambient temperatures)
occur at or near this frequency.

We now calculate R1 for the continuum and lumped models. For the
continuum model, the diffusion equation is solved by %(m,z) = %s e—kfx

for a semi-infinite wall. Then the heat balance equation (A2.5-1) says

~ A~

“AptgRels *hglp v g S - hTo =0

or ~

SO
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1

1C hf + kaf

For the lumped model we simply set GO==O in (A2.5A-9) to get

Ui + 1wa

L 2
% (U +h.) (U, +iwCe)-U;

Equating these two expressions for Rl’ we get

pcp(Ui + inf) = kC.U, (A2.5A-18)

which can also be written as

- pc pc K (1-1)
P e ) L Pope _
<Cf kf) <Ui kaf/ = kf (A2.5A-19)

This illustrates that with one (complex) equation in two (complex) unknowns
we get an indeterminate result. Note that for one specific choice of Ui’
namely, U.1 = kaf, we get Ef = o or for one choice of E% we can get Ui = o,
We note though, that complex Ui and Cg values produce poles with
nonzero real part, whereas real Uy and Cf will require the poles and zeroes
to be in the right place. Poles and zeroes off the imaginary axis will
produce peaks in R; and R, which would violate the second law of thermo-

dynamics. Therefore we add two more real equations to get a determinate

solution: Im(Cg) =0 and Im(Ui) =0. These yield

U; V2 AcK, |kf| (A2.5A-20a)

V2 pcp Af

Cp = T (A2.5A-20b)
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This models the semi-infinite slab as being equivalent to a finite-
thickness penetration depth. The heat capacity is equal to that of one
penetration depth of material (penetration depth = /f/]gf) , while ﬁi is
equal to the heat transfer coefficient for one-half a penetration depth.
(The penetration depth is for a frequency w = 2rw/day.)

The semi-infinite model is not useful by itsélf, since real walls
have finite thickness. However, it can be extended to finite walls by
letting ﬁo have nonzero value.

We know in the 1limit of w—0 that the heat transfer coefficient of
a thick slab of homogeneous material is Kf/d. We also know that R1 and
R2 should have the same steady-state behavior in the simulation as in
the exact solution since a significant part of the driving forces occur
at zero frequency. Therefore we set the value of UO such that
<(ﬁo)~1 + (ﬁi)_1>—1 = Aka/d where Gi is obtained from the semi-
infinite model.

To reiterate, for thick walls, we set

u.

;= V2 AK. [k (A2.5A-20a)
/E—pc Af
Cp = — P (A2.5A-20b)
x|

0 - AgKe\ -1 B (G )-1 -1 (A2.5A-20c)

0 d i
This assures that R and R have the same limit as w-~+0 as

1 lumped 2 lumped

the continuum response functions.
Table 2.9 and Fig. 2.9 for 20-ft (or semi-infinite) concrete walls,

and Table 2.8 and Fig. 2.9 for 1%-ft concrete walls illustrate how well the
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semi-infinite model simulates the exact model for thick walls. Figure
A2.5-1 also illustrates the effect of changing the match frequency from
2n/day = w, to 3/2 W, and 2wo. As shown, the R; function does not
change drastically. Raising the match frequency improves the fit for
W ~ 27/4 days but worsens it for higher frequencies (> 27w/% day).

In looking at the response functions one should note that a good
fit for R1 is more important than for Ry- R1 describes the wall's
reaction to sunlight, while R2 describes the reaction to ambient temperature.
The walls are the primary place where solar heat is collected and stored,
thus a 1% error in R1 for the wall will cause about a 1% error in the
room's thermal reponse to solar gain (look at the form of the coefficient of
S in A2.4-22). In contrast, the walls are in parallel with other channels
for heat exchange between the room and outdoors. The other channels
(infiltration, conduction through windows) are larger, thus a 1% error
in R2 results in a much-less-than 1% error in room response to ambient

temperature (compare the T, coefficient in (A2.4-22)).

A

We have now modeled homogeneous walls in the approximation of thick
walls and thin walls. We next show that these two models are sufficient
for all thicknesses of walls and present a decision rule for when a wall
is thick and when it is thin.

Tables 2.10 and 2.11 compare the lumped parameter values for various
thicknesses of wall for wood and concrete. These results are also
displayed for concrete in Fig. 2.10. The tables 1list values of Ui’ UO, and
Ef for both pole-and-zero and thick-wall models. It is seen that the

two techniques are consistent; that if they yield equal values for one

of the parameters (Ef, for example) they produce nearly equal values for
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the others. Thus we can divide the range of material thickness into
two regions:

1) Walls thinner than the thickness at which the two

techniques produce equal parameter values,

2} Walls thicker than this.

From the tables we see that the dividing point between thick and thin
wall is 5 to 6 inches for wood and 10 inches for concrete. This dividing
point is logical for another reason. The semi-infinite model shows that
only a finite amount of heat capacity is effective no matter how thick
the material is. It is unreasonable to simulate a finite-thickness wall
using a larger value of Cf than for a semi-infinite wall.

Thus, a reasonable decision-rule seems to be to use the pole-and-
zero approach when it produces a heat capacity less than +2 prAf;/lkfl
and to use the thick-wall method otherwise. At the dividing point it
should make little difference which method is used since they apparently
produce approximately the same results for ﬁi and Go'

To show that the two methods should describe all walls, we note
that the semi-infinite approximation should work well when the wall is

thicker than the penetration depth: when

2Kf

wOpcp

where w, = 2w/ day. Sondereggerl says that the pole-and-zero approach is
within 10% for wRC <10, where C = pcpd and R = d/Kf. This condition

says

10Kf

c W
P p
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In this case w represents the highest frequency of interest, thus w ~ Swo
So the pole-and-zero approach works for w < SKf/ pcpwo. We conclude

that all values of d can be modeled.

Insulated Walls

Insulated walls can also be modeled by both the pole-and-zero
approach and by the semi-infinite approach. Again, the ranges of validity
for these approaches seem to overlap, and the same decision rule (use the

pole-and-zero approach whenever it gives a lower value of Cf) appears to

apply.

Insulation on the Outside

We next attempt to model two layer walls composed of a continuous
material inside (e.g. masonry) and insulation (with pcp -+ 0) outside.
This exercise is necessary because, as we will show, adding a resistance
RO to the outside does not simply increase the outside resistance 1/UO
by RO.

Suppose that the wall/floor we are modeling has two layers, one a
continuum and one a pure resistance. We first assume that the resistance
is on the outside, as this is a reasonable design for a passive solar
house. In this case the continuum model response functions change while
the lumped functions look the same, but have different values for the

parameters. The solution to the diffusion equation is given by

Tf = A1 cosh kfd(l -z/d) + B1 sinh kfd(l -z/d)

But the boundary conditions are
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oT¢ N
"Afo W = U (Tint - TA) (AZ.SA"Z].&)
z=d
Tf(z=d) = Tint (A2.5A-21b)
and
BTf “
Afo T 0 + ufS + hf(TRf'TS) = 0 (A2.5A-1)
where Tint is the temperature of the resistance/continuum
interface
Gr is the heat transfer coefficient of the resistance.

Using the equation for T, in these three boundary conditions, and

£
recalling that TS = Tf(z==0), we get

Urhf
Ur coshkfd + kaf sinh kfd .
Ay = T, » + (heTp+ a g5) )
(A2.5A-22a)
Urhf
i coshkfd + Ursinhkfd U
f°f T
B = T. X + (W, T+ g oS) —
1 A D f'R f kaf
(A2.5A-22b)
Urhf
where D = (Ur-+hf)cosh kfd + kaf + kaf sinh kfd
We set TS = Tf(z==0) and solve for R1 and R2. The result is
Ur
cosh kfd + K;KE-Slnh kfd
R1 = Uh (A2.5A-23a)
rf .
(U, +hp)cosh ked + <kaf + E—;(;—)suﬂl ked

1

D



-290-

8]
T

R, = (A2.5A-23b)

2 U h
T .
(Ur-khf)cosh kfd-+ kaf-fgfg sinh kfd

Note that these reduce to (A2.5A-6a,b) in the limit of U, >

or no insulation. We rewrite these expressions as infinite products

U d

T 1 .
cosh k,d + —— (-k——d— sinh kfd>
R, = f £
1 ’ 1 Kf Urhfd /1 )
(UI' +hf)' cosh kfd + _(-I:—]—-I-—H_)— <—a" (kfd) + K <E—-a>>51l’lh kfd
rUF £ f
>
Urd 00 (kfd)
<1 + _Kf >I;U; 1+ an
= - .5A-2
Thd — )2 (A2.5A-24)
(U_+hy) (1 + £ TT s £
f (U_+h_ K z
£ f) Py
n=1
where P, and z, are the solutions of
- Zp Kf
tan Zn = —U—d—- (AZ.SA—ZS&)
T
p, (U, +hp)
tan P, = X T hd (A2.5A-25Db)
—£'P2 _rf
d *n Kf

As before, R2 is just a constant divided by the same denominator as Rl’
so it contributes no new poles or zeroes.
Also as before, we require the steady-state conductances to be the

same in lumped and continuum models, and that the first pole and zero
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be the same. This requires

R A‘%( + L (A2.5A-26a)
U U. ' f U
(o] 1 T
2 "~
p. K U. N R
_ ot f - Ci <A__l:_ . [UO+Ui]> (A2.5A-26b)
pcpd f hf+Ui
2k
Z A A
s f2 ) __C_l_ @ +0,) (A2.5A-26¢)
pcpd f

These are similar in form to (A2.5A-1la,b,c,), and have similar solutions:

2 2
~ Z A ~ z ~
U, = —-%- —Ai—ur+<-;1 - >hf (A2.5A-27a)
p1 dUr + Afo p1
~ d Al oaep\7E
R R > (A2.5A-27b)
£f
2 Ao
d pc (U, +U)
Cg = L (A2.5A-27¢)
z° K
n f

For the thick wall case, we use the same values (A2.5A-20a,b) for Gi and

Cf and use (A2.5A-26a) to solve for ﬁo:
-1

5 <ff> Lol gt
0 d
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-~ ~ ~ 1/2 ~ 2 ~ ~ ~
For d-+0, p1+-((hf+Ur)/Uf) , and Z;> m/2, so Ui > 77 /4 Uf = 2.467 Uf,

and Cf - Cfo' We note that for the example of thin concrete walls with

1-inch of polyurethane foam insulation board (R-8), that C. -+ 0.95 C0

f
or 95% of the heat capacity of the walls is effective -- in contrast to
about 50% for an uninsulated wall. Even for a 6-inch wall, 90% of the
heat capacity is effective. (For thicker than 6 inches, the thick-wall
model gives larger Cf.)

We plot the comparison between the continuum lRll and the thick-wall
and thin-wall approximations for |R1! in Fig. A2.5-2. This figure gives
response functions for 8-inch concrete and 4-inch wood, both insulated
with R-8 insulation. As seen in the figure, both the thin and thick wall
models give reasonable agreement, but the fit is better in both cases
with the thick wall model, as expected from the discussion above. The
response functions for insulated concrete are also tabulated in Table
A2.5-2, and for comparison, response functions for bare concrete are in

Table A2.5-3.

Insulation on the Inside

The purpose of this section is to simulate the adverse effects of
carpeting a massive floor. We model a diffusive material with a pure
insulator (pcP + 0) on the inside. Solar absorption takes place at the

top surface of the insulator, so the surface heat balance is given by

~

U(T, o - Tg) + 0S + ho(Tp-T) = 0 (A2.5A-28)

int f S)

instead of (A2.5A-1), where Tin is the temperature of the interface

t

between the insulator, and the slab, and UC is the heat transfer

coefficient at the insulator ("carpet').
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Then conservation of energy at the interface gives us

~ BTf
UC(TS-—Tint) = - Afo —5;— (A2.5A-29)
z=0
also
Tint = Tf(z=0) (A2.5A-30a)
TA = Tf(z=d) (A2.5A-30b)

Tf solves the diffusion equation, and is given by

Tg(z) = A, cosh ked(1- %)+ B, sinh kd(1- )

Equation (A2.5A-30b) requires that A2:=TA. Using this expression
for Tf in (A2.5A-29) and (30a) gives two equations in two unknowns (B2

and TS). These are solved by

Uc kaf
<Ff“+—UC - 1> COSh_ kfd - UC sinh kfd B )
B, = T + (h T, +0,.8) e
2 A D f R “f (hf-+UC)D
(A2.5A-31)
where
kaf h
D 0 cosh kfd + 5 T sinh kfd
c f c
K k
ff .
kaf UC cosh kfd + sinh kfd B
Ty = e T, + (heTp + agS)
S (hf+UC)D A (hf+IJ)D f'R f
¢ (A2.5A-32)

So we conclude that the continuum version of Rl is given by
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ud

c 1 .
cosh kfd + T;;" 1—8-51nh kfd
R, = £
1 thcd
(h.+U )(cosh k.d + sinh k d>
f "¢ £ Kf(hf+UC) kfd f
U\ = (kfd)z (A2.5A-32)
L) T {1+ —5—
f / n=1 z.
B heU_d = d)z
1+ TI' (h+U )< >
(h +U)Kf n= n

where P, and z are the nth solutions to

—zn Kf
tan Z]_1 = "Td——“— (AZ.SA—32a)
Cc
-p_ K (h +U )
_ n f£Yf "c
tan pn = —————————————-—thCd (A2.5A-32b)

Then the three conditions: 1) Rl(w = 0) is equal for both models,

2) first pole and 3) first zero are at the same w in both models require

U+ UG = Afo+ . (A2.5A-33a)

and (A2.5A-26b,c).

Note that the definitions of 12 and Zy have changed from what they were in

(A2.5A - 25b,c). Note also that (A2.5A-25 b,c) are the same here

as for external insulation because the lumped response functions have
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the same form irrespective of whether the real wall is insulated; only

the values of ﬁi and Go and Cf change. The results are

2 2
~ 21 Ay A (7 n
u, = — u_+ — - 1) he (A2.5A-34a)
P{ Afo + d UC Py
n2
A _ i ~ _
u, = " - Uy (A2.5A-34b)
1\ Lo
<l" 2 >(hf + Ul)
“1
dzpc (ﬁ. + UO)
C, = p_1 (A2.5A-34c)
z2 X
1 f

These are the same as (A2.5A-26abc) with different values of zy and Py
and with U replacing 0.
c T 1
. ~ -1 o~ 210
A thick-wall model would set Ui = {(vﬁ'Afo|ka + (UC )}

d -1

-1
and U, = (K;K;’* U; > - (A2.5A-35)

Again, the switch between pole-zero and semi-infinite models is dome
whenever d is so large that CP.Z. > Cs.i. Table A2.5-3 shows the
response functions for a carpeted concrete floor, compared to a bare
floor. Note the drastic difference in shape between the response
function for bare concrete, which drops with frequency as w 2 2m/2 days,
while the carpeted response function is nearly frequency-independent.

Results are tabulated in Table A2.5-4,
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Interior Walls

Interior walls are modeled similarly to insulated walls. For a
partition wall, the diffusion equation is solved by

Tp = A3 cosh kfd(l—z/d) +B3 sinh kfd(l;z/d). In this case, the

wall has two interior surfaces, so the heat flux halfway through the

wall is identically zero. Thus d = the half-thickness of the wall.

i dT | _
For centerline flux = - KfEEE x=d to be zero, B3 =0 .

Then Eq. (A2.5A-1), the heat balance at the surface, says

—Afoka3 sinh kfd * O S + thR - hf A3 cosh kfd =0 (A2.5A-36)
50 A, = (h,T, + G S) !
3 f'R £ hf cosh kfd + kaf sinh kfd
Then TS = A2 cosh kfd S0
N S
n=0 2n+1 5
cosh kfd )
R. = - = ; '
1 hf cosh kfd + kaf sinh kfd o (kfd)z
hf 17- 1+ 5
n=1 P
n (A2.5A-37)
R, =0,

hfd
Kfpn

where tan p =



-297-

Ui + 1wa

For the lumped case, R; = — 5 as before.
(hf+Ui)(Ui+1wa) - Ui

In this case there are only two match conditions, first pole and

first zero, since the steady-state conduction is zero. The conditions

are.

2 £
-Py P 1 fi
oc_d? C, e+l

2 ~

e %

— - -
C
4pcpd £

The solution is:

(A2.5A-38a)

(A2.5A-38b)

(A2.5A-39a)

(A2.5A-39Db)

Note that this solution is the same as that for an outside-insulated

envelope wall in the limit that ﬁr + 0 (perfect insulation).
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Example: For 5/8" gypsum board, use ASHRAE values of
K = 0.0936 Btu/hr-ft-°F ,
Cp = 0.26 Btu/1b-°F (for gypsum)};
p = 50 lbs/ft3 (for gypsum board).
Then,
p; = 0.804
Ui = 4,226 Btu/°F—hr—ft2 = 2.35 UO , (UO = K/d)
o 2 _ -
C = 0.646 Btu/°F-ft = 0.953 CO s (CO = pcpd)

Thus 95% of the heat capacity is effective, and Ui is greater than the

conductance of half the thickness of board.

2nd Example: 8" concrete block partitions (d = 4"); K = 0.54 Btu/hr-ft-°F,

o = 144. 1bs/ft’; C, = 0.156 Btu/1b-°F
p; = 0.836
U = 3.796 Btu/ft’-°F-hr = 2.343 U_
c = 7.11 Btu/ft2—°F = (0.950 CO
Again, if C > C . -« - .. , we use the thick-wall approximation with
semi-infinite
60 = 0. Similar expressions could be derived for a wall/floor insulated

on both sides; this is omitted here because we can see no immediate
application for the results.

The preceding lumped parameter approximations are more accurate
for envelope walls, but can also be used for Trombe walls, as discussed

below.
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Trombe wall lumped parameters

Modelling a Trombe wall differs from the previous models for
envelope walls in three ways. First, the surface heat balance involves
the channel air temperature instead of the room temperature. That is,
Eq. (A2.3-17) is used as the surface heat balance in place of (A2.3-16)
or (2.1). Second, the back-side-of-material boundary condition
involves room temperature rather than ambient temperature. Third, the
back-side boundary condition is not perfect thermal contact but rather
coupling through a film coefficient.

We discuss next how these changes affect the process of evaluating
lumped parameters, and how the accuracy of the lumped model is impaired.
We focus the discussion on the thick wall model, since most distributed
Trombe walls are '"'thick'.

Since the basic equations differ, we must rederive the lumped
and distributed response functions from scratch. We first consider the
continuum case.

The solution to the diffusion equation is

X . X
Tw(x,m) = A, cosh kwd(l - aﬂ + B, sinh kwd(l - aJ (A2.5A-39)

4 4

The outside boundary condition is similar to that given in the
"insulation outside' case (A2.5A-21):

aT_ A
_AwKw 9x <=d = UwR(Tint_TR)

where ﬁwR is the film coefficient coupling the back of the Trombe wall

to the room air (Btu/deg-h)

and Tint is the back surface temperature of the wall
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Combining these two equations, and noting that Tint = Tw(x=d),

4 = U Ay - Tp)

is the wall (front) surface temperature Tw[x=0)

(A2.5A-40)

(A2.5A-41)

h is the heat transfer coefficient between the Trombe

wall surface and the air in the channel between that

surface and the collector window (See Appendix 2.3

TC is the channel air temperature

The channel air temperature is obtained from (A2.3-20);

substituting this and (A2.5A-39) into (A2.5A-41) produces the following

equation.

Ay(AK Kk sinh k. d + 0
W W w W a

cosh k d)
W

+ B4(A Kk cosh k d + U sinh k d)
WoWw W W a W

h 0
_ we CcA
= oS 4+ =T
W o A
%
where
L= hwc * cA * UcR
no hwc(UcA * UCR)
a )
and UCA

h U
_ _Wc cR T

g R

and ﬁcR are described in Appendix 2.3.



-301-

Using (A2.5A-40) on this equation, and rearranging terms we find that

Ua UwR hwc UcR
UwR cosh kwd S G sinh kwd + ——~E—~——
A, = T v
D
+ 3 S 1, T hwc UCA 1
w D A X D (A2.5A-43a)
uu h U U
a wR . wc cR wR
@R cosh kwd + UwR sinh kwd - 5 &
B, = -T \—+~ w W
4 R D
(A2.5A-43b)
. a-s_+hwc UcA\T YR 1
w L A K k D
wow
UanR
where D = (Ua + UWR) cosh kwd + <Kwkw + K;K;”“”) sinh kwd .

We note that TWS = Ay cosh kwd + B4 sinh kwd; thus the previous equation

shows that
h U U
S —EE-EB-cosh kd+ Wg sinh k d
wR z W Kk W
T T ww
WS R D
(A2.5A-44)
UwR
h U cosh kwd + K—E—~51nh kwd
N we CcA T W W
W % A D

This can be expressed as linear sums of the response functions

R, and R, for insulated walls given in (A2.5A-23) with U.r replacing

1

Ur’ Ua_replacing hf and wall subscripts replacing floor subscripts.

Written in this fashion, we have
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hchcR — wc cA
TwS = ( 5 le + R2> TR + <uw S + ——§-——-TA> R1 (A2.5A-45)
Comparing this with the previous expression

T, = Ry (hTp + OS) + R,T,

we see that the important solar term is still Rl aS but that the TA
term now involves R1 instead of R, and the TR term involves both.

For the lumped model, we use the differential equation (A2.3-23)
for the bulk wall temperature and (A2.3-21) for the surface heat

balance to give the following two equations:

Gwc, + 0+ D ) T, - Uy Too = Uy Tp = 0 (A2.5-464)
~ ~ N ﬁ 0 ﬁ 0
G .+0)T =aS+0.T wC CcA ¢ we R+ -
wi a WS W wi W g A g R
(A2.5-46b)

where Uwi and Uwo are the inside (absorber surface) and outside (room

side) lumped conductances, respectively. Solving for Tws , we get

U. +U + inC h U
T = wo w as+uT
WS D W 2. A

h
we

__"E—EB'<Uwi *U ot in&) +U. U
5 Wl Wo Ty (A2.5-47)

where D

(U.+U +iwﬁ'\(U+U.> _u 2
w1l WO W/ a w1l W1
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Using (A2.5A-9) for the lumped response functions, we find that

we can express the surface temperature as

— hchcA hchcR
TWS = R1<OLWS + — TA> +<—-Z— R1 + R2> TR (A2.5A-48)

in the lumped model; note that this is precisely the same form as that
given in (A2.5A-45) for the distributed parameter model. Thus the Trombe
wall response functions are just linear combinations of the envelope wall
response functions, and the same matching procedures should work, (again
using U _ instead of U_ and U_ instead of h.).

wR T a £

However, one new problem crops up. While the response function
coupling TWS with TA was relatively unimportant for an envelope wall
(being relatively small in magnitude and in parallel with much larger
couplings) the Trombe response function coupling TWS and'TR is important.
This is because the coupling works in both directions; we are concerned
with how T affects T, as well as how T, affects T _. (The

ws R R ws

analogous statement was not true for the envelope wall. We are not
concerned with how TR affects TA; we know that the influence is

infinitesimal) .

Thus while for the envelope wall, we were only concerned with

X

the accuracy of Rl,'we are now concerned with the accuracy of hchCR/Z
R1 + R2' Consider the following typical values of the U's for a Trombe
wall: hwc’ the coupling from receiver surface to channel air is about
4 Btu/ftz—deg F-hr; UCA linking the channel air to the outside is about
0.75 for double glazing, and UcR’ the convective heat flow to the room,
is about 0.35. Then hWCUCR/Z = 0.275, so we look at the comparison

between lumped and continuum versions of R, + 0.275 R,.

2 1
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Tables A2.5-5.and 6 give Ry and R2 in both the continuum and
lumped models (both thin wall and thick wall) for 18"-thick concrete with
Ua=:0.86 Btu/ftz—degF-hr and Uwr = 1.5. The thick-wall lumped
parameters are Uwi = 2.52 Btu/ftz—deg—hr C=9.64 Btu/ftz—deg and
UWO==O.3281 Btu/ftz—deg—hr. As shown in the table, the lumped Ry
is correct for w = 2m/yr, too large for w = 2m/4 days, correct for
w = 2m/day to about 2m/12 hours, and too large thereafter. Maximum
errors are on the order of 20%. R, is 1/3 the magnitude of R, or
less. The lumped R2 starts off at w = 0 equal to the continuum Ry,
but it declines more slowly with w, differing by more than a factor of
2 for w = 2m/2 days and a factor of 4 for w = 2m/day. The absolute
magnitude of error is smaller; about 45% of R2 (w = 0) at most and
25% at w = 2m/day. Thus the lumped model will overpredict the amount
of energy entering the room via conduction through the Trombe wall at
finite frequencies. This overprediction is most important in the
range of w ~ 2m/3 days.

Error in the function ”(R24~O.275 Rl)” (compared to its value
at w = 0) is zero for w = 0, 15% for w = 2m/week, rising to 22% for

2m/2 days, then declining to 15% for w = 2m/day, and 9% for

w

w = 2w/8 hrs and 2m/3 hrs. This is relatively larger than the error
for envelope walls, but still not overwhelmingly large.

It is of interest to compare the thin-wall lumped parameter
model with the thick wall model. Using the thin wall model produces
Uwi considerably lower than before: 1.068 Btu/ftz—deg—hr instead of
2.52. UWO increases to 0.3987,and C is 20.53 Btu/ftz—deg instead

of 9.64. These lumped parameters produce the values of R, and R2

1
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listed in Table A2.5-6. As seen, the form of these response functions
differs greatly from the thick-wall model. The thin R2 is more accurate,
although still twice as large as the continuum R2 at w = 2n/day. The
thin R1 is slightly more accurate for w small, but reaches its high
frequency limit near w = 27m/day, and starts disagreeing with the
continuum R1 by a large factor for w ~ 2m/8 hrs. Error in the thin-wall
function (R2 + 275 Rl) is only 1% for w = 2mw/week, 6% for w = 27/2 days,
11% for w = 27m/day, but rises to 17% for w = 21m/8 hrs and 30% for
w = 21/3 hrs.

All three functions, Rl’ R2 and R2 + 275 Rl are plotted in
Fig. 2.5-4 for both the thin and the thick models. This graph is domne
on semi-log paper to provide with reader with a better estimate of error
magnitudes.

What is happening is that the thick-wall model is calculating
the collector surface temperature better, and estimating surface-to-
room and surface-to-outdoors heat transfers more accurately, but the
thin wall model is doing a better job of calculating heat diffusion
through the wall.

It is not surprising that the R2 function is simulated most

poorly, since that function describes heat transfers through the wall.
For a very thick wall, the continuum nature of the wall is very
important in describing heat flow from one side to the other; no
choice of lumped parameters would provide an adequate simulation. To
see this, note in Table A2.5-5 that the daily heat transmission is

phase delayed by more than 7, while the maximum phase delay for any
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lumped representation with only one heat capacity is m/2. This phase
error can be important, since delaying the daily transmitted sine wave
by more than T puts it completely out of phase with the direct solar
gain and ambient temperature fluctuations, and allows one to design the
response of the building to provide for their cancellation. For the
parameters given above, the thick-wall model is preferable, since the
two response functions to be simulated are Rl and (R2+ 0.275 Rl). The

thick model simulates Ry better, and does about equally well on

(R2-+O.275 Rl). However, if the convective coupling from the Trombe
wall surface to the room is very weak, the thin-wall model would be
preferable (although neither would be especially good: the response
of the Trombe wall to ambient temperature - which is large because the
solar glazing is a good conductor - would be badly modeled through

the inaccuracy of the thin-wall Rl).

Conclusions

We have shown that the thermal performance of continuum walls
(or floors) can be approximated (over the range of frequencies from
0 to about 3 X 2m/day) by the performance of a sandwich wall composed
of a heat capacity Cf coupled to inside and outside by two heat
transfer coefficients Gi and ﬁo' The equations for the lumped parameters
depend on whether the wall/floor is bare or insulated.

In each case, the wall is modeled by one of two methods. If the
wall is thin [roughly, if d < v2/|x|, (k = Viupe /K )] the method
involves matching the poles and zeros of a response function. If the wall
is thick, the method involves setting the lumped response function equal
to the continuum function at one frequency, typically w, = 2m/d.

The equations for the lumped parameter are summarized in Table 2.3.
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Appendix 2.5A Footnotes

1) See Ref. 9, Chapter IV.

2) See, for example, Ref. 31, Chapter 3.

3) See Ref. 109.
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TABLE AZ.5-1

Response Functions for 20-foot-thick Concrete
(Rl only, R2~ 0)

Continuum Thin-wall
w model Jumped model

Rl (hr—ft2-°F/Btu) Ry (hr—ft2—°F/Btu)

0 0.655 0.655
2m/year 0.638 ¢ 0- 9451 0.641 ¢ 0-0181
27 /month 0.573 ¢ 0- 1321 0.632 ¢ 0-002%
2m/week 0.492 ¢ 0-2%7% 0.632 ¢ 0-001%
2n/day 0.320 o 0- 4281 0.632

21/8 hrs 0.234 ¢ 0-2351 0.632
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Response functions IRl vs. frequency

lI) T T TTTTH [T TTTTIN I T T TTTIN T T 1 TTTHT 1171 HY
N T B
05 F = -
| Semi-infinite concrete E—
Ol NN B YT O 1T IS B B WET Lill
Tl 1073 10°4 [o | 10
Frequency (rodlons/hour)
Period yr. mo. | wk | 2Ld. [i2-h! 3-h

2-wk. 4-d. d. 8-h.

XBL 786-1104

Fig. A2.5-1. Response functions for semi-infinite concrete for
three choices of match frequency. The solid line gives the
continuum ‘Rll as a function of frequency. The dotted line
with the lowest 1limit for w = « is derived for a match
frequency of w, = 2m/day. The other dotted curves give

|R1| for match frequencies of 3/2 Wy and 2mo.
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Response functions IRl vs. frequency

|'O_._ I TTTITHN T TT7TT 1T T T HITI [T TTHI T T T
0.5
8" concrete, insulated outfside
1.0 .
L \\\ —
0.5 F- ===
- 4" wood, insulated outside N
O TN N T VO I A T 1 1 I T Y Y I W W 1
10°% 1073 od | lof | 10
Frequency (ragions(holLlr)
Period: yr. mo. | wk. | 2-d I2-hl 3-h.

2-wk. 4-d. d 8-h.

 XBL 786- 1106A

Fig. A2.5-2. Response functions for insulated materials as a function
of frequency. LoglRli is plotted vs logw for two materials
with insulation of R-8 (8 ft2-hr-°F/Btu) on the outside. The
solid lines represent the continuum response functions. The
heavy dashed lines describe the thick-wall lumped model response
functions, while the light dashed lines represent the thin-

wall functions.
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Response functions IRl vs. frequency
|.O T T T T TTIT T T T T T ITnmr 1 1T

—

()|5 B | -

8" concrete, bare

ll()T:
015_
— 8" concrete, carpeted 7
0. | Lt L 1 IlIWI ﬁ L tiifin i 11 I}JI!H R
10™% 103 02 | Lot | ( | 0
Frequency (radians/hour)
Period:  yr. mo. | wk | 2-d. l12-h 3-h.

2-wk. 4-d.  d. 8-h.
XBL 786- 1107A

Fig. A2.5-3. Response functions for carpeted 8"-thick concrete in
comparison to bare 8" concrete. Log|R1| is plotted vs logw.
Carpeted concrete has a pure resistence of RC = 1.24 ftz—hr—°F/Btu
on the inside. The solid lines represent the continuum response

" functions. The heavy dashed lines describe the thick-wall
lumped model response functions, while the light dashed lines

represent the thin-wall functions.
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Trombe wall response functions vs. frequency

TTTTI T T TTTTH T TTITIN 1T TTTTTH T TTTTN

R, _

|l2 foot
Concrete Trombe Wall
hwcUcr
ST R+ R,

Ra

(IR | T [ II]IIIl1
1073 \|0"2 \ IO"' |
Frequel:ncy (ro?ions/hour)

| |

Period: yr. mo. wk. 2-d. 8-h. 3-h.

2-wk.  4-d. d.
XBL 786-11I

Fig. A2.5-4. Response functions for a 1.5-ft-thick Trombe wall.

The most important function is (hWCUCR/Z) Ry + R,. In this

figure the y-axis is |R[ rather than 1og|R[ to better

display the magnitude of errors. The heavy solid lines
represent the continuum response functions. The heavy dashed

lines describe the thick-wall lumped model response functions,

4

while the light dashed lines represent the thin-wall functions.

The light solid line describes the naive lumped parameter

case where U, = U = 2U, and C = (OCP)W A,d.
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APPENDIX 2.5B: A Comparison Between an Exact Solution and Its

Lumped Parameter Representation

In this section we develop an exact general solution to the
differential equations of Sec. 2.4 which comprise the distributed
parameter solution to the passive solar house model. This solution
is an extension of the methods described in Ref. 32; it is used here
to check the validity of the lumped parameter approach. We find that
for the numerical values we tried, there is excellent agreement
between the two approaches.

The Fourier Solution of Sec. 2.4 is actually the inhomogeneous
solution to the differential equations (2.1)(2.2)(2.3) and (2.4)
presented in that section. If the boundary conditions of the differential
equations change, (for example, the windows are shuttered at night),
one must also consider the homogeneous solution of these equations.
The complete solution is the sum of the homogeneous solution and the
inhomogeneous solution. It is extremely tedious to compute; however,
for a few '"typical" cases it can be used to check the validity of the
lumped parameter approximations.

In this section we consider a simplified passive solar house,
similar to the Sonoma house described in Sec. 3.5. The "floor" of this
house consists of water-filled bottles, and is an inherently lumped
component. Thus we need consider only one diffusion equation for the
continuum walls, simplifying the calculations.

The results of the calculation are plotted in Figs. 2.11 and
A2.5B-1. Figure 2.11 displays room temperature as a function of time,

with the exact solution plotted as a solid line and the lumped-parameter
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solution plotted as a dotted line. Figure A2.5B-1 is a similar
representation of wall surface temperature.

Both figures show the same pattern of agreement. Except for the
first hour or two after the windows are shuttered, both solutions are
jidentical to within 5% or less. During the transition periods, the
lumped parameter model shows discontinuous changes in temperature, which
occur because the room and wall surgéce have no heat capacity. The
distributed model requires continuous temperatures as a function of
time, because the surface layer has finite heat capacity (per unit
thickness). However, the sudden difference between the two models
decreases quickly as the faster exponential decays in the continuum
model go to zero.

The equations for the house to be modelled are presented next.
The ""floor" subscripts are used to describe the solar collector. The

heat balance for the floor surface is (from (2.1) and (2.6))

~

h (T

£Te - TR - oS0 + 1 (T

g ~ T =0

fi
]

where ﬁf is heat transfer coefficient from floor surface to
room air (Btu/oF—hr, or W/OC)

Tf is the floor surface temperature (°F or °C)
s

~

Ufi is the heat transfer coefficient from floor surface

to floor interior (Btu/°F-hr, or W/°C),

and the other symbols are defined in Sec. 2.2.
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The floor is modeled using lumped parameters because the heat capacity
of the floor consists of water, which mixes readily.

The floor heat balance, from (2.7) is

Cp Te-Upy (Tg = Tg) + Vg (Te-TY) = 0

>

where o is the heat transfer coefficient from floor heat
storage to the outside (Btu/°F-hr, or W/°C)
C. 1is the floor heat capacity.

~

Since [%i is very large, we simplify the equations by taking their
limit as ﬁ .. > oo,
fi
We do this by eliminating Tf between these two equations and then

taking the limit; we get a simplified floor heat balance
Cfo = hf(TR-Tf) + Ufo(TA"Tf) + afS(t) (AZ2.5B-1)

The wall heat balance is (also from 2.1)

. 9Ty
0,8 + h (T =T ) - AK, —= . = 0 (A2.5B-2)

=]
=

where is the heat transfer coefficient from room air to

the wall surface (Btu/°F-hr, or W/°C)

T is the wall surface temperature (°F or °C)

A is the wall surface area (ft2 or mz)

Ky 1s the wall bulk conductivity (Btu/°F-hr-ft, or W/°C-m)

T, 1is the wall temperature as a function of x, the distance

into the wall from the interior surface.
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Heat flows within the wall are described by the diffusion equation (2.3)

3T K, 9°T
e s (A2.5B-3)
(Pey)y ax

The boundary conditions are

TW(O,t) = T (A2.5B-4)
which is true by definition and
T,(d,t) = T, (A2.5B-5)

where d is the wall thickness. This equation assumes perfect thermal
contact between the outside wall surface and the outside air.
Finally, the room heat balance from (2.2) is (in the limit of

Ufi+oo)

he(Tp - Tg) + b (Tp-T ) + Uq(TR—-TA) = 0 (A2.5B-6)

~

where Uq is the quick heat transfer coefficient for all heat losses
except those through the floor and walls (e.g. infiltration, windows)
(Btu/°F-hr, or W/°C).

These six equations will be solved under the assumption that ﬁfo
changes values between day and night (corresponding to the fact that the
window covering the collector is shut at night). Thus the equations will

be solved for the day period using the daytime value of U. and then

fo
solved again for the night period, and the two solutions will be joined
continuously at sunrise and sunset, as was done in the lumped parameter
case (see Section 2.3).

To begin the solution, we note that the two independent variables

or driving forces are TA and S, while the two dependent variables are
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Tw(x,t) and Tf(t). TR is an intermediate variable; we eliminate it
by solving (A2.5B-6) and (A2.5B-2) for TR and Tws' We first write

these two equations as:

thR N wTws = -uWS h AWKW 90X 0
(hf-+hw-+Uq)TR-thWS = thf + Uq'rA

We then solve them for TR and Tw as follows:

oT
_ 1 w ~ A
TR TN A [ﬁ(aWS * AKy 7;{"O> + (thf + UqTA)]

he+ 0
(e +0,)

T =‘A——7——-—A——[h(hT +UT)+(h+h+U)<0{.S+AwK—~——- >]

ws hoth.+0) w T f g A f w o Tq'\w woo9x 0
wof q

Using these results in (A2.5B-1), we get:
. oTy,
Tf + Ale - A3 5E = AZTA + AS (A2.5B-7)
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where we have defined

_ 1 thq ~
Al - E—_ ~ A +Uf
£\ h_+U °
f q
A, = —l—(A + thq ) = A
2 Cf fo 7 +ﬁ 1
f q
1 heAKy
A3 =C_ =
f (hfd-FAWKw)
o h
Ay = OLf““AWfA
hf+Uq
X
£ = q

The above solutions for TR and TWS also transform (A2.5B-2) into

aT

D, =~ - DT, = D,T, +D,S (A2.5B-8)

Tw'o”lag‘zf 300 ¥ Dy

where & = x/d (so & goes from 0 to 1).

(hf-+hw~+Uq)AWKw

and where D1 = T — -
dhw(hf-+Uq)
hf
D2 = A ~
h.+U
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D = Uq
3 - A ~
hf+Uq
o (hf-+hw~+Uq)aWCf
4_ - A~ A~
(hf ~+Uq)h

The last two equations (2.5B-7) and (A2.5B-8) will yield the solution.
We have already obtained the inhomogeneous solution in Section 2.4 and

Appendix 2.4; it was expressed in the form

TR(w) = Xs(w) S(w) + XA(w) TA(w)

where we use the notation XS and X, to represent the ratios of building
response functions B(w)/A(w) and C(w)/A(w). Since we are trying to
compare an exact solution to a lumped parameter approximation, we can
take only one Fourier component to represent S and one other (plus a
steady-state term) to represent TA’ as was done in the lumped model

solution (Sec. 2.3). As in the lumped model, we set
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We let TA = ATA.elwot where w, = 2m/day.

We measure all temperatures with respect to daily average TA

so that the steady-state part of TA is zero.

Thus the inhomogeneous solution is

XS(wl) S(t) + XA(wO)TA(t) 0st< ty
TR0 =1
Xy (@) T, (1) ty <t <24 hrs
where ! is calculated using nighttime values of the parameters.
XA b

We also will need to calculate the inhomogeneous solution for
Tf and Tw; these can be obtained from the TR solution by calculating

the response of each to stimulation by either S or T We expect solutions

A
of the form
T = X_5(t) + X, T, (t)
£ Se Af A
and
T,00t) = X, (0 S(E) + X, T,(t)
W W
Equations (A2.4-20) and (A2.5-9bc) imply that
h ol G
Tew = \ 7 Af Trw * = Af S + 3 fo Ty
I%O+hf+mmf Qh+hf+uwf I%O+hf+umf
(A2.5B-9)

while (A2.4-12 and 16) (with Re = 0) require that
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- hwcosh kw d + AwKwkw sinh kw d . hw T . o ‘
wo  Aw \ D D Rw D “w
' iw(pCp)w
where kw = —x (A2.5B-10)
W
and D = (A KXk coshkd+ h sinh k d)
Ww W W W W
and Tw(x) = Twm sinh kw d (1-&) + TA cosh kw d(1-&) (A2.5B-11)
For response to sunlight, we set w = Wy and TA = 0; we note that
TRw = Xg Sm and write
h e + a
Tf = — fAS £ S(t) where w is set to wy
Ugo* g + 10,C¢
(A2.5B-12a)
Xe ¥ 0O
_ wW's W . _
T =22 (sinh k, d(1 - £))S(t)

For response to ambient temperature, we set w = w_, and re-evaluate X,

and k and get
W

X, *+ U
T, = — £4A fo T ()
£, +h.+iwc, A
fo f o F
h x, - fﬁ cosh k. d + A K k sinh k d-
T, = {cosh k, d(1-g) + A X LR A Y sinh kd(1-£)

(A2.5B-13a)
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Thus
. _ hf Xs-kaf
S ~ ~
£ Ufo-fhf-+1wle
(A2.5B-12h)
h X +0o
w's W .
XSw = > <51nh kwd(l—£)>
ﬁ'x+ﬁ
f
XA - - AA fo (A2.5B-13b)
f UfO-Fhf-FleCf
ﬁwXA' (ﬁwcosh kwd + AwKwkwsinh kwd>
Xpn = cosh kwd(l—g) + 5 sinh kwd (1-8)

w
(A2.5B-13b)

Homogeneous Solution

We look for solutions of the form

_ -t
Tw(x,t) = Two(x) e
since we are solving a diffusion equation and a lumped parameter heat

balance, both of which are solved by a series of (one or infinitely many)

decaying exponentials.
The diffusion equation (A2.5B-3) tells us that for this form of

solution
2 2
-AT = —_KW 2 Tw = A ° Tw
WO pcp BXZ w 3&;2
0 K /d
where £ = % and A = E‘i = v 5
w R pcp
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A _ 2
Let -— = & |,
by
then T (x) = A elzg + A e_lgg
W, 1 2

The boundary condition (A2.5B-4) that Tw(d,t) =TAf=O for the homogeneous
solution allows us to write this solution as

ﬂ%}x) = B sin 2(1-§&)

Then the homogeneous solution to (A2.5B-7) and (A2.5B-8) is

2 2
(—AWQ,+A1)TfO + ZAsB cosf = 0

and B(sin& + D12 cosl) - Dszo = 0

These two equations can only be true if the determinant of the

coefficients B and Tfo is zero, so we require

(Al-szz)(sinz + Dlz cosf) + lAschosl = 0

or

2
- (A, -ARD)
Lcotl = : (A2.5B-14)
(A, -A2") D, +45D,

This is the condition under which the exponentially decaying solutions
solve the problem. We can therefore look at a series of exponentially

decaying functions

T. = T e'AWQSt and T (x,t) = Bsin® (1-£) e
f fo W n

2
-A At

only for those values of ln which solve (A2.5B-14). There will clearly be
an infinite number of such &'s, as shown in Fig. A2.5B-2 where we plot the

left-hand side of (2.5-14) as solid lines and the right as a dotted line.
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Orthogonality

We next show that we can arrange the homogeneous solutions to this
set of equations in a vector format, with one vector for each decay
constant Xn' We will show that the vectors can be chosen in such a way

that the solutions at each Kn are orthogonal to each other.

First, consider the relationship between Tf and T .. We showed

that
Mgy - Bsing (1-8)
WO n

then (A2.5B-8) requires that

D
2
B = Fmn v D.8 cosi. ‘fo (A2.5B-15a)
n 1™n n

Thus it is reasonable to look at basis vectors of the form:
1

T D, sin® (1-8) >
n 2 n
n 1I™n n

We show next that such basis vectors are orthogonal to each other, and
in the process calculate the form of scalar product between two vectors.

Consider two vectors

Tgﬂ Tg@
and
ey 2@
w W
Then by (A2.5B-3),
2..(n)
3T
LN (A2.5B-16)
2 nw
ag
and e
2,.(m)
a T
+QL¢@ - 0

BEZ m
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Multiply the first of these equations by Tgw and the second by Tgn)

and subtract:

5 R
pm_w MW, (A2.5B-17)
w BEZ W 852

The lefthand side of this equation is equal to

) (m)
o (o Ty ) 5 () 8T,
9E \ w  9g 9 \'w  oF

Then (A2.5B-17) can be integrated (by parts) from &=0 to &=1; the

result is:
' ' 1
[ 10 (Tfj’”) 0 - T“(,’“)(O)(TVS“)) (0] + (2 - 27) f ag T o
0

(A2.5B-18)
where we have used the fact that Tw(l) = 0 for any m or n, and where
s e 0
1 —
(') signifies 3
We next eliminate the term in brackets by using the homogeneous part

of equation (AZ.5 B-7). We write the equation as

1
(Al-Awlg)Tgm = A, Tgn)(O) for the mth vector
and '
2. () _ (@) th
(Al —Awg,n)Tf = A3 Tw (0) for the n
. ) ) (m)
Multiply the first by T and the second by 'Tf and subtract, to get

£

(AR A M Aa(Tén) " (0) - Té‘“) " (0)) (A2.5B-19)
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Then we use (A2.5B-8) in homogeneous form to eliminate Tf from

the righthand side of (A2.5B-19); the result is

W D

R Ao by okt —3< ™0y 1™ 0y - 10 1 (03>
2

This result is used to replace the bracketed term in (A2.5B-18), to

yield the final result
1

DA

(2 - )3 23W RN / ag T(e) T‘g“)(g)s - 0

0
or
1
(zfl-zz)<cf T 1 g f ag TV(e) T‘(Nn)(g)) = 0
! A |
(A2.5B-20)

where CW = (pcp)w d A

This equation gives the form of the scalar product between two
basis vectors and proves their orthogonality. The scalar product is
in an intuitively appealing form, it is the sum of the product of the
Tf components of each sector, weighted by the floor heat capacity,
and the integral of the TW components, weighted by the wall heat capacity.
This form is analogous to the scalar product derived in Ref. 32.
Orthogonality comes about because (A2.5B-20) requires the product
of 2;— Rﬁ and the scalar product of basic vectors m and n to be zero;

if m # n, then 2;-—2§ # 0 and the scalar product must be zero. This

equation also allows us to normalize the vectors, such that the scalar
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product of any basis vector with itself is one.
Using the form (A2.5B-15b) for the basis vectors, we find by

(A2.5B-20) that the square of basis vector n is

2

D
2 (o v : (1o 2 sinan,)) smean
n\f W (sinf_+ & D, cosi )2 2 42n
\ n n 1 n

Thus the normalization condition requires Tn to be given by

2
D

1 1 .
+C = - sin24
n n f Two, . 2(2 4% n>
(51nln-+D1£n cos zn) n

1
-4

(A2.5B-22)

where we have renamed Tn as Nn as a reminder that it is a normalization
factor. Note that in practice, the form of (A2.5B-22) is unsuitable

for numerical calculations, since the values of ln are determined
approximately from solving the transcendental equation (A2.5B-14). Since

(sin Rn + D ln cos Qn) << 1, the value of Nn_is very sensitive to the

1

computational accuracy in deriving Rn. So in practice, we use (A2.5B-14)

to rearrange (A2.5B-22) into the following form:

N, = {cf v C, —z—jl—g[ﬁi + E’?Z . (E-i)z] }_1/2 (A2.5B-23)
where

B, = (Al-szfl)Dl + AD,

E, = A, -A8”
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This completes the solution to the homogeneous equations. The

solution can be written as

2

C 'szn
Z An e 7 (A2.5B-24)

n=1 n

where A, are arbitrary constants determined by the boundary conditions,

andA\7; are basis vectors, given by

Jp - N

n <Dzsinzn(1-g) >

sin + D.% <cos %
n 1™n n

Complete Solution.

For a house which changes the parameter Ufo from day to night,
we can write the complete solution for each period as the sum of the

homogeneous and inhomogeneous solutions. This solution is

sl 2
2{: AT e'szn + X S(t) + X, T, (t) 0<t<t
= n™~n ~S ~A A d
\.7(1:) = a 2'2
1 n '
: <
Z B J, e + Xy T, (t) t <ty <24hr
(A2.5B-25)

where a primed variable is evaluated using nighttime parameter values

X
:f> whose form is given by (A2.5B-12

and where the X's are vectors (X
T

and 13).
To derive a numerical solution, we must solve for the A, 's and
B. 's. The boundary conditions are the same as in the lumped parameter

n

solution: continuity and periodicity. We require that



~334-

V/CRDRERRV(CHS a)
(A2.5B-26)
0" = J(24 hr)) b)

We first use condition (a) and take the scalar product of

with both sides of the equation. The result is

® _sz;lztn
A= D 0 Bye £ C (A2.5B-27)
n=1
where
1
Omn = \.7m "k7n

n = (Tt O - %)) TR0) - (T Xg) S(0)

m

(@]
1]

o
n

n 24hrs - td

!
We next use condition (b) and take the scalar product of \J7% with both

sides of the equation, so that

o ALty
B = Z O An © + Dy (A2.5B-28)
n=1
where
1 [] 1
Dy = (T X)) Sty + (T - (X - X)) Tty

Combining (A.25B-27) and (28), we get expressions for A, and Bm:



-335-

0 A (R% 400t % A2
B w "% d " "n n T
D SN D o " b e,
b n=l
- (A2.5B-29a)
°° A (22t atte o N
B = 0 0 GAW(nd . o) B +Z 0 eAWantd C.+D
m eEs] nm ng 2 4 mn T m
— n:
2=1 (A2.5B-29b)

Evaluation of the Solution

To evaluate (A2.5B-25 and 29) requires the determination of three

expressions: Omn’ Xs jm 5 >~<A jm . We find equatiomns for these

three next; following that we evaluate a numerical solution based on the
Sonoma house.

/

First, Omn :jm . j

L DD} sin2 (1-E)sin & (1-£)

. R 1
0 (sinf + Dl’Qm cos Q,m) (stLm + D'19’1;1 cos SLI'n

Since D,=D; and D =Di, we can write this as

2 <sin(£m -2) sin(g, +2.) >

2 9 -4 - 2 + 2
m. n m

2(sin ,Qm+ Dlﬁlm cos JLm) (sin 2;1 + Dlzn cos SLT'I)

As in the case of the Nn's, this expression is very sensitive to
small errors in the &'s. It could be expressed elegantly as
Omn = Nm NT'1 Cr (Al—A'l)/AW(-SL;-SL'nz) , but this is even more

sensitive to errors in evaluating the &'s. A more useful form for
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numerical work is

2 t 12
[(Al_AWQ'm)D1+A3D2][(AI_AWQIH ) D 1+A3D2]

0 NN, {C. + ——CW
TN = m 1 f 2 . . '
A% 2sin JLm sin Q’n
sin(2_ - 2)) sin(f_ + %))
m n m n
X S - (A2.5B-30)
m n m n

Next we evaluate Xs'jm' From (A2.5B-12) we can write XS as

2

~ ~ D

ﬁ.X + 0 h X + ¢ ;
% f whs  w (sinh kwd(l—f;)>
Ufo+hf+1mlcf

where D is defined in (A2.5B-10), and

w, (pC,)
e =y L Plw (1+4)
W 2K,

Note that K is evaluated for w=w, . Thus the expression for the scalar

product of Xs and jm is

FaY A 1
heX, + o CWDZ(XShW+0LW) f "

?\(,'S.'"Zn = Nm Cf ~ fAS +
Uf0+ hf + 1(1)1Cf D(smSLm + Dlzn cos Q,m)

ig (1-8) -ig (1-¢) GO (1-E) (1+1) _-6(1-£) (i)
% <e - € > 5
2i

L
where B —d = Re(kw) «d .
2

/
For jm we simply substitute primed values of 'Q’m' The integral,

call it I, can be expressed as
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, O+ - JGICEE DI

-0 (1+i) 1 - _ (20(1+1)
© 2176 +1(0-2) 6+i(6+2)
o) M ey | e
% i - - (A2.5B-31)
S0 +1(-6, - ) B+i(-6+2)
Then
’ Fal N 2
heX  + o Cw(xshw.kaw) I((Al—Awﬁm)D1+AaD2)
XS'JGX = Nm Cf ~ ~ . - ;
Ufo+hf+1w1(]f DA3 51n.Qm

(A2.5B-32)
For Xs we use the primed values of Rm and A1 (as well as I).
The final expression we need is :Zn. X

This calculation is analogous to the preceding:

~ ~ 2
heXy + Ugg J((Al—AwQ,n)D1+1\,3D2)
J.*X, = N_|C — + C
m ~A m f ﬂ +U0. +ip C W DA in %
f fO lwo f 3 S1in m

where

; Aw e e
2 8 (1+1) 2i

i)

~  kyd ~ . ) P )
fl (A Kk, +hyle LA if,(1-8) ) if (1-€)
dg

0

X

1
. 5 o (1-
(ee(1+i)g _ Q2801+ e-e(1+i)\+f it i (1-8) o ig (1-€)
/7 Yy 2i

y <66(1+i) (1-g)>

Note that Ke and GGare evaluated for w=w, here.
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We also note that

- +
5z (AyKyky + hyde XAhW o, 1 ee(1+i)
2 e6(1+1) D 21

; - ~if : i
e 6(1+1) _ o ] 00+ o

0+1(0- Zn) 6-+i(6-+2m)

where I¥ is the result of evaluating (A2.5B-31) for I except setting

w=w in calculating 6 and kw'

Numerical Solution

We base our model house loosely on the Sonoma house described
in Section 3.5. That house contained some internal thermal mass
(building materials) which we omit in this section. We make the following
assumptions about the building parameters and materials: (Note that since
we are comparing two mathematical solutions, the exact accuracy of the

parameters is unimportant as long as they are consistent in both solutions):
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Floor thermal mass: Cf = 3535 Btu/°F
R 400 Btu/°F (day)
Ufo = o .
30 Btu/"F (night)
Floor-to-room film coefficient: ﬂf = 75 Btu/°F
Area of walls: Aw = 198 ft?
Thickness of walls: d =% ft
Heat capacity of walls: pCP = 9 Btu/°F ft’

Total heat capacity of walls: pC Awd = 891 Btu/°F

p
Walls-to-room film coefficient: h. = 198 Btu/°F-hr

w

Quick house heat transfer coefficient: Q1= Btu/°F-hr

Fraction of sun absorbed on floor: Op = 952
Fraction of sun absorbed on walls: o = 048
Solar gain during the day: S1 eimlt

(where S; = 65,000 ¢"99031 Btu/hr)

Length of day period: td = 6.5 hrs

Solar frequency: w, = 0.3415

For simplicity, we take AT =0, steady outdoor temperature. The lumped

parameters are:

U. = 112 Btu/°F-hr
W1

U = 35.4 Btu/°F-hr
W

C = 428 Btu/°F

o~ ~ ~

along with the parameters hw’hf’ Ces Ugg Uq above.

>
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The lumped parameter solution can be derived as

11 -0-2119t oo -0.1263t 4o 40 B(0rt-2.42) day
T =
w .
6.0 o-0-2104(t-€q) | 1 5 4-0-02312(t-ty) night
L3 o0-2119t g o -0.1263t o oo (ilwt-2.2035) day
T =
0.9 o-0-2104(t-tg) | go 5 ,=0-02312(t-tg) night
g o-0-2119t | o 5 201263t | o yac (B0t - 1.89) day
Tp =
L4 o0-2104(t-tg) | 56 5 o-0-2312(t-tg) night

In addition, to compare this solution to the exact solution, we
wish to derive a wall temperature which is analogous in both solutions.

T,; is not measurable, but the wall surface temperature, Tws’ is.

From (1) we note that

o S+nh T,+0.T
T = w w R wi w
e h_ + U .
W w1l
Thus
1069 &70-2119t 5o g (m0.1203T 5y ygp ot (W (€-4.80hTS))
Tus = -0.02312(t-t )
e 3.06 e 0-2104(t-ta) | 94 17 ¢ d
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We now proceed to calculate the exact solution. From (AZ2.5B-7

and 8) we evaluate the D's and A's:

A, = 0.127 (day)

1
or 0.02257 (night) D1 = 0.025675
./\_3 = 0.002562 D2 = 0.336
A = 0.03022
W

We next use (A2.5B-14) for the decay parameters ’Q'm

L, = 2.0402 5&'1 = 0.8743
JLZ = 2.578 zé = 2.56754
23 = 5.34435 !Lé = 5.3441
—_ 1 ~
14 = 8.2937 52,4 = 8,
_ 1 =]
5&5 =11.327 25 = L
—_ 1 ~
5&6 = 14.4015 26 = L

Then we can use (A2.5B-23) to evaluate the normalization factors

N, = 1.6495 x 1072 Ny = 1.6756 x 1072
N, = 3.243 x1073 Ny = 1.3607 x 107>
N, = 4.986 x 1074 Ny = 4.366 x 104
N, = 2.146 x 10”4 Ny = 2,037 x 1074
N = 1.177 x 1074 ND o= N
Ny = 7.47 x107° E
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Using (A2.5B-30) we calculate the matrix (Omn). To check the calculation

we note that

1 [ ] _
VAR D R ALV ALY D VT
m=1
Also
' ' _ 1
Tn T2 I BT = 20y
2=1
Thus
l_ 1
“7; B 25: %mn ng V2
mk
SO
2 O Opg = 6n2
Similarly

E: Onm OZm = 6n2
So to check the matrix Op, , the sums of the squares of its rows and

columns should add to one. We calculate that

0 = 0.99363 -0.11258 -0.00359
mn

0.11295 (.99346 -0.00076

0.0037 0.00038 1.0017
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2 R .
We note that the test ZZ: Opn = 1 checks to three significant figures.
nor m

We note also that except for 021 and 012, all off-diagonal terms are

very small. ALl diagonal terms are very close to one. We use these
results to calculate Xs"7ﬁ from (A2.5B-31) and (32) using the result
[£rom Appendix 2.4, Eq.(A2.4-22 )] that X, = 2.872x10™% ¢0-9747%,

After a very long and tedious calculation (evaluating I in (A2.5B-31)

in a 98-step calculation on an HP programmable calculator), we find that

X7 asasx10? oSy L asysxao? -1.2151
X7, = 512 x 107 o1 03231 X+, = 9o.assxit 09T
X Ty = 1453 c10-3 o2-7509i ¥ -7y - Ls72 x10-3 2-6727i
X T = 8.984 x 1074 296751 AN o 138 x 10-4 293961
RICANER c1g-d o 3-04321 AR 1g-d 3.0289i
X5 T = 356 % 107 %0765 X Ty = 5.58 x 107 o3 06791
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Thus from (A2.5B-27) and (28), we arrive at the values of Cj and
Dy that follow and are prepared to solve for the coefficients A, and B

in (A2.5B-25), which is the objective of the whole exercise:

C1 = 1673.2 D1 = 2830.4
C2 = 138.4 D2 = -8.758
C3 = 16.97 D3 = ~70.50
C4 = 21.98 D4 = =29.25
C5 = 15.50 D5 = -15.19
C6 = 10.86 D6 = -8.938

Note that in tn. last several calculations, the sixth term of the series
is not trivially small, so that we are potentially making an error in
truncating the series so soon.

Equations (A2.5B-29a) and (29b) supply the equations for A, and By.
These look like complicated sums, but can be evaluated to a good approxi-

mation with only a few terms. We look first at (a):

2 12 12
@ A (22 tgeR ) w WAL
Ap = Z OO © . ? A,Q,+Z Om © v Dyl
=1 n=1

=1

11° 022, O12 or O21 can appear in the first

sum. Other diagonal elements with m differing from n by two or more

For m=1 or 2, only O

for K>3 is accompanied by an exponential
A

are essentially zero, while OKK

of e 3% or smaller. Since e *3td < 0.004, such terms are negligibly

small. For m=3, all terms in the sum are small, since terms with expo-

nentials of appreciable size involve O32 or O31 which are very small,

while the exponential for the 023 term is smaller than 10—8.
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In the second sum, the exponential kills off all terms with n»>3
This reduces the sum to two terms for m=1 or Z, and eliminates it for

m>3 (since 03i = 0 for i#3). Thus we can solve for Am as follows:

2
Al = 011(0.2947)A1 + 0..0 (0.181)A2 + 011(0.6675)D1 + C

11721 1

where we have dropped:

2 12
2 ettty ) b 0, ~o0.01
O12 e A1 ecause 12 .
and e—( )“’0.01
2 12
0,.0 Tttty ) A b l0,,0,.] ~ 0.1
12722 © 2 ecause 12722 .
and e=() ~0.01
2
"szé th
0, e D, because |012, ~ 0.1
and sl ~ 0.03
and D2<< D1
Thus
Al = (0.0286 A2 + 5007
Next,
2 2
A, 0,101, (0.2947)A, + (021(0.181) + 022(0.0083))A2

+

021(0.6675)D1 + 022(0.0306)D2 + C2

where we have dropped

‘Aw(zftd+£;2td)
022012 e A_1 because IOlZ ~ 0.1
() ~o.01
So, A2 =.0.0312 A1 + 355, ‘ A3 =--0.00238 D1 +C3 = 23.96 ,
A4 = C4 = 21.98 , A.5 = C5 = 15.50 ,
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A6 = C6 = 10.86

Having evaluated the first six terms of the series for Ay, we
return to (A2.5B-29b) for B,. As before, most terms in the expression

will turn out to be trivially small.

2 12 2
© -1, (et +2, t_) © -A %t
nd 8 M wn d
= 0 C.+D
2=1
Thus
B, = [02 (0.2947)+o2 (0.181ﬂg +[0,,0,.(0.0135) +0,.0,,(0.0083)]B
1 11 21 b Rl e 217224 2
+ 0,,(0.4414)C, + 0,,(0.2711)C, + Dy
or
B, = (-0.00082)B, + 5076
Next,
_ 2 2
B, = [012011(0.2947) + 022021(0.181)]31 + [012(0.0135) + 022(0.0083)]B2
+ 04,(0.4414)C; + 0,,(0.2711)C, + D,
or
B, = -0.01276 B, + -55.1
By = 0;5(0.4414)C + D, = -73.14
B, = D, = -29.25
B, = D, = -15.19
B, = D, = - 8.938
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Since in the solution (A2.5B-25), we encounter the quantities AnNn
rather than just A, (the N, is part of the expression for\j;) we solve

the preceding equation for AnNn and 1list the results below:

AN, = 82.83°F BlNi = 85.06°F
AN, = 1.659°F BzNé =  0.16311°F
AN, = 0.01195°F BSNé =  0.03193°F
AN, = 0.004717°F B4NA = 0.005958°F
AN. = 0.001824°F BSNé = 0.001788°F
AN, = 0.0008°F B6Né = -0.0006587°F

We next display the numerical values of the exponential decay

constants (Awﬂz)

A, = 0.1258 he ! A; = 0.02310 hr L
A, = 0.2008 Ay = 0.1992
Ay = 0.8631 A; = 0.8631
— ' —
A, = 2.079 Ay o= A,
— vt
A, = 3.877 AL = A
— ' —
A, = 6.268 RYEDY

The value of X, is computed to be

(7.290><1o"+ e'1‘21441, 3.436 x 10~

y ~1.6041 (sinh kd(1-8) )
© sinh kd

This completes the numerical work necessary to evaluate a solution
which can be compared to the lumped parameter solution. To make the
comparison, we shall calculate Tf’TR and the wall surface temperature Tws'

We note that wall surface temperature is TW(O). The room
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temperature can be derived from the room heat balance (2):

(thf * thﬁs)

where XS = 2.782><10—l+ e_0'97471. Thus we calculate (to the nearest

0.01 degree):

-0.1258t -0.2008t -0.8631t iw, (t-6.46 hrs)
e + e + e :

82.83 1.66 0.01 +47.38e

e—0;02310(t—td)+ —0.1992(t—td) .o e—0.8631(t—td)

85.06
L + -0.01 e

-0.16e
-2.079(t-tq)

0.03

e—0.1258t -0.2008t e—O.8631t

+-5.22¢e + -0.41 -2.079t

32.58 + -0.43 e

+ -0.32 6 3877t | 5 93 76-268t 4+ 18,67 otw; (t-5.75hrs)

o-0-02310(t-tg) -0.1992(t-ty4) -0.8671 (t-tg)

26.47 + 1.30 e

-2.079(t-tg)

+ 1.254 e

-3.877(t-ta) , 19 o-6-268(t-tg)

+ 0.58 e + 0.37 e .19

+ ...

e—O.l258t -0.2008t e—0.8631t -2.079t

+ -11.72 e + -0.88 + -0.92 e

e 20.68 6 3877t .49 ¢76-268t . oo g, iw;(t-5.18 hrs)

37.89

ws o-0-2310(t-ty)

0403 -0.1992(t-tg4)

. 2.83 o -0.8631(t-t4)

-2.079 (t-tg)

+ 2.68 e

+ 1.23 e =3.877(t-tq) | .41 o~6-268(t-tq)

+ 0.69 e 41
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This concludes the calculation. We discuss its significance next.

Floor (Storage) Temperature

As is readily apparent from the coefficients, there is excellent
agreement between the lumped solution and the exact solution. The
inhomogeneous terms agree in phase and are 2% apart in magnitude; in
general, the lumped and exact temperatures agree within about 2%.

This agreement is to be expected since the floor is an inherently lumped
material which is described identically in both models.

Note the fast convergence of the coefficients (AnNn). This
convergence should go as 1/n3 in the limit of large n. This is
because by (A2.5B-29), A, goes proportionally to Ty * Xg» Which in turn
goes as 1/n (since zn ~ nm  for large n and L};- Xs. & 22 I/N while
I l/ﬂn). Thus since Nn o 1/n2, AnNn o« 1/n3 . Thus only the first one
or two terms are important.

Room Temperature

Since the room has no thermal mass, and is coupled to the solar-
receiving wall surface, which also has no thermal mass in the Tumped
model, it can change temperature discontinuously. It does so when the
collector panel is opened or closed.

In the real world temperatures do not change discontinuously.
Thus we would expect to "round off the corners' on the graph of temperature
versus time for the lumped model. When one does this, it looks quite
similar to the exact solution (see Fig, 2.11).

This is apparent looking at the equations for room temperature.

The coefficients of the slowest decaying exponential at night are 26.7



-350-

in the lumped model and 26.5 in the exact solution. The second coefficients
are within 1°F of each other, while in the exact solution, the third and
higher terms decay to less than %°F after 2 hrs. For the daytime period
the agreement is also close: about 1% for the first term and 0.4°F, or
10%, for the second. The decay times are also in agreement; the slow
decay constants differ by less than 0.1% at night and 0.5% in the day,
while the second decay constants agree to within 6%. (The direction of
disagreement is also as expected. The lumped model is trying to simulate
a series of faster decays with one 'fast' term -- so one would expect its
decay constants to be faster (larger). This is indeed the result of the
calculations.)

The inhomogeneous terms are of combarable magnitude in both models.
However, the phase delay in the lumped model is about %-hour too small.
This error in phase lag is to be expected from the response function
analysis of the lumped parameter method discussed in Appendix Z2.5A.

The reader should note the behavior of the coefficients for room
temperature. For both day and night, the coefficients decrease rapidly
fromn=1 to n=2 or 3, but beyond this the convergence. is-slow. - This
result is expected because room temperature is a weighted average of
storage temperature and wall-surface temperature; and the latter can be
seen by (A2.5B-15), (25), and (22) or (23) to converge only as 1/n. (Note
that N, = 1/n? but Dzsinkn/(sinzn-+D1£n cosﬂn) diverges with n? ;
thus the only convergence of the wall surface temperature is due to the
convergence of An. As discussed under floor temperature, this is
only a 1/n convergence).

Because of the slow convergence it can be seen that some nontrivial
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terms are left out by truncating the series at mn = 6. ‘This can also be
seen by calculating TR (t=0 or t==td] with both the night and day
equations. By (A2.5B-26), TR should not change discontinuously, but
the truncated solution jumps by about 1°F at sunset and 1%°F at sunrise.
These truncation errors die off quickly, of course, since the seventh

term decays to 0.01% of its original magnitude after one hour.

Wall Surface Temperature

Wall surface temperature is the most sensitive comparison of the
lumped parameter model with the exact solution, since it is a variable
which refers to the continuum which is being approximated in the lumped
model. In the continuum solution, the wall behavior is characterized by
a function Tw(x,t), while the lumped model approximates this with a
wall-storage temperature Tw(t), which is not the average of Tw(x,t),
but rather is chosen to simulate the response of the wall surface to
excitations.

Wall surface temperature is analogous in both solutions so it is
a good variable to compare. In this case the wall surface temperature’
comparison checks the validity of the thick-wall model for 6"-thick wood.

As in the case with room temperature, the wall surface temperature
in the lumped parameter model can change discontinuously because the wall
surface has no thermal mass as idealized in that model. Large (5 - 8°F,
or 15 -50%) jumps in wall surface temperature are in fact calculated in
the lumped parameter model.

The exact solution requires continuous surface temperature; however

the change from day to night generates a series of relatively important,
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quickly decaying terms which smooth out the discontinuities, as shown

in Fig. A2.5B-1. The figure illustrates the generally good agreement
between the lumped model and the exact solution (except at the disconti-
nuities). Agreement is within 5% for all times beyond Z hours

after sunrise or sunset. In addition, the form of the expressions is
similar, with the slow decay terms differing by 4%% in the day and by
less than 1% at night, and the second terms differing by 10% and 8%
respectively. The inhomogeneous terms are alike in magnitude but differ
in phase lag by 25 minutes; again, the lumped model has insufficient
phase lag.

As discussed in the section on room temperature, convergence 1s
relatively slow (< 1/n) after the first two terms: this results in
truncation errors, for stopping the sum at n=6, of up to 3.3°F or 15%.

This section has shown that the thick-wall lumped parameter method
agrees with the exact solution to within about 3 to 5%. How does a more
simplistic lumped parameter model comparé?

Suppose we choose lumped parameter for the wall naively, by simply
setting Gwi = awo and requiring that the series conductance of the wall
still come out to ﬁw or AwKw/d . We set CW equal to the heat capacity

of the wall: (pCp) d A . Then numerically,. .

”~ N ~ _ O
UWi = UWO = 53.9 Btu/°F-hr
and
—_ (o]
Cw = 891 Btu/°F.

We solve the lumped parameter model with these values and all other

parameters unchanged; the results for wall surface temperature are:
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i i i(w,t - 4.26 hrs)
18.42 ¢ 00989t 5 56 o70-1299T | oo gog e L day

WS —0.2312(t—td) —0.10104(t—td)
24.19 e + -0.06 e night

This solution yields decay constants which are substantially
different than either of the previous cases. While the slow night decay
constant is unchanged, the faster decay constant differs from the previous
models by a factor of 2. The slow day decay constant is 20% smaller than
before, while the fast constant is 35% smaller.

The coefficients are also different, with the exception of the
dominant night coefficient. The faster night decay has a coefficient of
essentially zero in this model, compared to 3° in the previous cases.
While before the first two day coefficients had opposite signs, the
present model gives coefficients of the same sign. The inhomogeneous
term is also different from the previous models, with 15% (S.SOF) larger
amplitude and about 1 hour less phase lag than the exact solution.

The results of this model compared to the other two are graphed
in Fig.A2.5B-1. As seen in the figure, agreement is generally worse
than for the "optimal' lumped parameters. All three models converge on
the same temperature in the early morning hours, but the rest of the
time the "dumb'" lumped parameter model disagrees with the exact model by
two or three times as much as the "optimal" lumped parameter model (and
in the same direction). That is, during the day, the '"dumb'" lumped
parameter model is off by 10 to 14% (not counting the first 2 hours),
while during the night, the agreement is within 8%, improving to better
than 3% by midnight. The "dumb" lumped parameter model also has larger
day/night discontinuities of 10.7° (or 65%) at sunrise and 6.5°F (27%)

at sunset.
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It should be recalled at this point that any lumped parameter
representation which has Gwo and ﬁwi adding in series to the correct
wall U-value will get the steady-state response of the wall-surface
right -- what we are comparing is the difference in modeling the daily

(and faster) fluctuations.

Conclusions

This section has shown how the simplified equations of heat transfer
for a passive solar house can be solved exactly, even when house parameters
change as a function of time. This calculation is extremely time-consuming
and tedious to evaluate compared to the other calculations described in
this paper, even for the simplified case of one distributed material
("wall'") and one physically lumped material ("floor'").

For the numerical example developed in this section, the lumped
parameter approximation agrees reasonably well with the exact solution.
Further numerical examples could test the range of validity of the lumped
parameter models. A more demanding test would involve a smaller lumped
heat capacity and a continuum wall which was further into the '"thick wall"
domain. Alternately, one might extend the solution to cover two distributed

materials, so that the basic vectors would look 1like (Tf(y,t), Tw(x,t)).
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Wall surface temperature vs. time of day
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Fig. A2.5B-1. Comparison of wall-surface temperature elevations for
the lumped parameter model and an exact solution of the
problem. The solid line represents the exact solution, while
the light dotted line describes the lumped parameter approx-
imation. The heavy dashed line describes the performance of

a naive lumped parameter approach.
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Graphical solution of Eq. A2.5B-14
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Fig. A2.5B-2. A graphical solution of Eq. A2.5B-14. The left-hand
side is graphed with solid lines and the right is shown by
dashed lines. Intersections of these lines represent

solutions; they are labelled 21, 22,...
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