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Agenda

* Overview of the California Demand Response (DR)
Potential Study

* Summary of updates to the DR-Futures modeling
framework in Phase 4

* Evolution of system loads through 2050: key end-
use drivers and changes in the need for DR

* The evolution of Shed and Shift DR potential through
2050
® Technical, economic, and achievable potential
and the gaps between them
® Key end uses and trends

* Discussion: reaching fuller achievement of DR
potential
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The California DR Potential

Study

* The California DR Potential Study is a research effort for the California Public Utilities
Commission (CPUC) to estimate future DR resource potential and enhance the role of DR in the
state’s resource planning

* Previous phases identified four different “flavors” of DR:
— Shed: short-term load reduction to manage peaks
— Shift: changing the timing of load to manage ramping
— Shape: load modification in response to time-of-use or other time-varying pricing
— Shimmy: fast DR for ancillary services

* Phase 4 of the study focuses on shed and shift  Shape Shift Shed Shimmy
resources through 2050, as well as the .
potential to capture these resources as shape | - | | | |
D R \) | a d y nam | (o p rl Cl n g p rog rams Years Seasons Days AM/PM Hours Minutes Seconds
Incentivize EE Mitigate Ramps and Manage contingency Fast DR to smooth
and Behavior Capture Surplus events and coarse net net load and support
Change Renewables load following frequency
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Phase 4 Report Timeline and
Uses

. Study began early 2020; Load data collected for 2018-2019

. Analysis completed late 2022; report review and data release ruling complete April 2024
— Results and data reflect the time the analysis was conducted

. While under review, results were shared confidentially to support state agency analyses:
— IRP processes
—  CEC Load Shift Goal
—  California Load Flexibility Research and Development Hub (CalFlexHub)

. Report now publicly available, including datasets
—  Cluster time series (available now)
— DR Potential Results (coming soon; contact us if you are interested in this data)

. Research projects furthering this work
—  California Load Flexibility Research and Development Hub (CalFlexHub)
— CPUC Dynamic Pricing studies (1 published, 1 under review, 1 in progress)
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Data and modeling methods

Updates for Phase 4
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The DR-Futures Framework

The Phase 4 study includes significant updates across all parts of the modeling framework

Smart meter data for LBNL-Load: DR-Path: Build a
California IOU customers Customer and system DR supply curve

« Demographic data for all load forecasts « Pair clusters with DR
>13M IOU customers « Cluster customers technologies to

* Hourly load data for a based on observable generate possible future
stratified random sample similarities DR pathways
across sectors, building - Disaggregate load * Select the pathways
types, regions, etc. profiles into end uses that maximize the DR

* >400k hourly customer load « Forecast future loads resource for a given
shapes according to existing levelized cost

statewide forecasts
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IOU data request: in two

stages
Stage 1: Descriptive data for all accounts Stage 2: Hourly meter data for 2018 and
that were active in 2019 2019 for a representative sample
* Demographic information on every service account * LBNL developed a stratified random sample of the Stage
- Sub-LAP, climate zone, zip code, latitude/longitude 1 data based on numerous characteristics, including
- Energy service provider, and tariff, including indicators geography, climate, building type, peak demand, annual
for CARE, NEM, and EV ftariffs consumption, and presence of electrified loads
— Account start and end date, 2019 peak and total
consumption ¢ Total sample size was set at 3% of customers
— Indicators for all-electric customer and/or electric
heating, EV owner, residential type (single family vs. * Sampled 2% of residential customers and used the

multi family), NAICS code remaining “budget” to more thoroughly sample the high

« A complete list of very large customers (2019 energy use diversity of customers in the non-residential sectors

reater than 10 GWh
g ) * This approach allowed us to sample 35% of total 2019

DER data; linking accounts to NEM and SGIP datasets load in the IOU service territories, in a sample of only 3%
of accounts

EV rebate data

* EE and DR program participation data



10 T R
1NGBA930BSD2SE8N2

1 TR
i W T cisR €2
R 000 240

Clean, cluster on

i
i
ypvmlg'g'%czamm

LBNL-Load

From a large sample of customer
smart meter data, generate
thousands of clusters

g

SAMPLED

representing sets of similar

customers, disaggregate specific | >~ shapes patterns

DEMOG characteristics, and DEMOG |———1q
DATA sample DATA |
Second Data Request _; |
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Correct PV, |
RAW METER Disaggregate temp- CUSTOMER
TIME SERIES dependent load; TIME SERIES I
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Cluster on load +other non-temp scale, Forecast, w/ END
dependent load Electrify USES

end-uses, and build a bottom-up

picture of the CAISO system load
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Key LBNL-Load updates for

Phase 4

* New customer load data:

>400,000 hourly load shapes for Residential Sector Commercial Sector Industrial/Ag sector
201 9 Building Types | End Uses Building Types | End Uses Building Types | End Uses
* Unknown + Cooling « Office » Cooling » Ag-crop * Boiler
. * Single-family + Heating * Retail-food * Heating + Ag-animal * Process heat
° MOdellng customer rOOftOp PV * Multi-family : anmatLlc'mht' + Retail-other + Ventilation + Ag-indoor * Process
. « Master meter + Indoor Lignting « Dining « Indoor lighting | * Ag-other cooling
generation - Quidoorighting | . | oqging - Outdoor - Chem/petrol | * Machine drive
. Dic;%v:/r;%h or * Medical lighting * Food/bev « Electrochem.
° . « Clothes Washer | * Education « Office » Mfg-equipment Process
Novel approach to CIUSte”ng - Clothes Dryer + Assembly equipment + Mfg-goods + Other process
« Refri t » Datacenter » Refrigeration » Mfg-materials * Non-process
CUStomerS by Ioad Shape . Fsaggeerra . » Warehouse » Water heating * Military * Pumping
« Pool pump * Refrigerated « Datacenter IT * Water * Rooftop PV
. * Spa heater h * Misc.
* Drastically expanded coverage + Spa pump WAENUSE | L BV eharging
. . * lelevision o
of building types and end uses + Office Reoftop PV
X t "
pes New modeling
* Modeling growth of electrified - Water heating in red
loads, including medium/heavy " EVlevel
duty EVs (MHDEV) * Rooftop PV
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Clustering customers by load

shape Residential
* We developed a novel approach to U - J\ \/\
clustering customers based on shared iteFlat Flat FlatCool AllDay DayEve
Ioad Shape features 0 1rsaur by 0 1romur 20 0 lr?our 0 0 1romur 0 0 13;”r b

* We used k-means clustering to identify \/
common daily load shapes in the o~ /\ NI
. . . MrnEve EarlyEve LateEve NitePeak
residential and commercial sectors and S TEEEEERR RIS
grouped these into similar types. L i B g

* Then we clustered customers (again Commercial
using k-means) according to the relative

frequency with which they exhibited nen et e =P
each typical load shape N
* The result is 9 residential and 7 ’ I ’ o ° T ’ o

commercial load-shape clusters _— . ey

representing different typical electricity /\ \/f\ N

consumption patterns

0 10 20 10 20
hour hour hour

- See ACEEE paper by S. Murthy et al.:
""" f EJ:.E[‘SYJECHNOLOG]ES SR https://emp.Ibl.gov/publications/multi-level-load-shape-clustering-and 12



Final customer clustering

* We combined the results of load shape clustering mm
along with other demographic and geographic

characteristics to develop a final set of customer Residential 1384
clusters: .
_ Sector Commercial 2786
— Utility Industrial 801
- Building Type Agricultural 363
— Building Size (S/M/L)
— Local Capacity Area Other 88
— Load shape cluster Total 5422

— Climate region (marine/hot-dry/cold)
— Low income indicator (CARE vs. non-CARE)
— kWh percentile bin

Cluster load results available at
https://buildings.Ibl.gov/potential-studies
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Results of load disaggregation:

Residential sector
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Results of load disaggregation:

Commercial sector
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Forecasting load growth

Baseline load growth

* Through 2030 from IEPR forecast (2021 Mid-case, including EV charging)
» Through 2050 using E3 PATHWAYS model for SB100 study (consistent with
CPUC IRP forecast)

Additional EE adoption

» Through 2030 based on energy savings from EE Potential & Goals Study
* Fractional savings in 2030 extended to 2050

Growth of electrified loads

* Through 2030 based on Fuel Substitution measures from EE P&G Study
» Through 2050 using SB100 PATHWAYS model
* M/HDEV loads from LBNL HEVI-Load modeling for CEC

2 ENERGY TECHNOLOGIES AREA LBNL-Load




Choose among options

Fixed of pathway  Define many gy and il
Cluster End-use I l DR Technology Incentive levels 1:N Pathway Outcomes | I Pathway Choice
DR Tech A
End-use A e.g.PCT B A e e
eg. HVAC Path A2: Tech A/ Incenive level 2
... DR Qty Xa2 kWh-year @ unit cost Ya2 /KW r
Cluster X oh h P
e.g. Office 0ose one pathway for
Buildings in DR Tech B each end-use with
Fresno e.g. Thermal Energy Storage ; DR Qty
Path B1: Tech B/ Incentive level 1 available under a given
.. [ EENUEG Lol e ar threshold unit cost.
Repeat for different

DR Tech C
e.g. V1G Managed Charging

End-use B
e.g. EV Charge

Path C1: 7ech C/ Incentive level 1
.| DR Qty Xor K r @ unit cost Yor

threshold cost levels.

Continued for other
DR Technology

Many pathway options for
each end-use...

DR-Path
Pair cluster load shapes with DR
technologies to generate a large

number of DR-Pathways. Select
pathways at increasing cost
levels to build a DR supply curve.
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Key DR-Path updates for

M ECCR
* Updated model for customer enroliment in * Improved modeling of DR dispatch
DR programs in response to incentives probability informed by CPUC avoided cost
calculator (ACC)

* Thoroughly updated DR technology
characterization * Estimation of avoided costs and GHG

. . emissions from DR using the ACC
* Modeling different types of DR Potential:

Technical, Economic, Achievable * Integration with CPUC’s EE potential and
_ _ goals study: technology saturation growth for
* Modeling effective DR resources as shape technologies that provide both EE and DR

DR from dynamic electricity tariffs
* Integration with CPUC’s Integrated Resource

* Accounting for the existing saturation of Planning (IRP) process: generate outputs
DR-enabling technologies in the building that can be used in capacity expansion
stock (e.g., BYO thermostat programs) modeling

=W ENERGY TECHNOLOGIES AREA DR-Path 18



Modeling multiple types

of DR Potential

Technical

dispatchable
potential

*Phases 1-3 only
modeled achievable
potential

Technical: The maximum that
can be achieved with the best
available technology

Economic

dispatchable
potential

Economic: The maximum that
can be achieved with cost-
effective technologies

Achievable™: What can be Mandatory
achieved considering program |
costs and enrollment ) Dynamlc
Achievable*® Prici
Dynamic Pricing: Potential . ricing
from dynamic pricing dispatchable potential

programs, which may include
behavioral/manual measures
that would not be used in a
dispatchable program

potential
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Findings

1. Changes in system load shapes and the need for DR
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System load forecasts:
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System load forecasts:

Summer Shoulder Winter

seasonal average days

o
<]
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s
N Summer peak
Growth in electrified loads— 2"
especially EV charging—drastically A =y
reshapes customer demand 5 2030 = comtowv
= 40 Res Water Heating
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Growth in renewables—especially L = o
solar—yields dramatic changes in = Com Heting
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By 2050 the combined effect has
shifted the net load peak into the
winter
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System peak hour distribution

throughout the year

Peak net-load hours, currently o
clustered in the summer months,
migrate significantly to the winter.

Coupled with periods of limited 2
winter renewable generation, these :
changes will pose new challenges
for managing the grid and may
enhance the importance of the
demand side. -

Net Load (GW)
8 &

0 1000 2000 3000 4000 5000 6000 7000 8000
Hour of year
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Findings

2. Shed and Shift DR Potential in California 2025-2050
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Shed Technical Potential

Supply Curve: 2030

LDEV charging grows

MHDEV charging appears
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Shed Technical Potential haricultural Z Nonres, BTM batt
supply Curve: 2040 350 Industrial —  Avoided costs
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® MHDEV charging grows 250 Il | I (|
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Shed Technical Potential

Supply Curve: 2050

® EV charging and water
heating both grow

® Space heating becomes
important

® Residential appliances grow
(clothes dryer electrification)

® Cooling resource declines
further
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Shed Technical Potential

Supply Curve: All Years
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Shed Achievable Potential

Supply Curve: All Years

200

Applying the customer enroliment
model sharply reduces the amount
of potential, especially in the
residential sector, reflecting low
historical enrollment rates

100

Levelized procurement cost ($/yr/kW)
w
o

This achievable potential estimate
relies on historical program
enrollment, so we refer to it as the
“Business-as-usual (BAU)
achievable” potential

Levelized procurement cost ($/yr/kw)
N
o
o

Future improvements in customer
outreach and engagement may be
able to achieve more
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Shift Achievable Potential

350 2025 Agricultural 2030 . Res. BTM batt.
Industrial - = - Non-res. BTM batt.
300 [ ] | [ 1] |

s
. g Commercial — - Avoided costs
Supply Curve: All Years 5 0 Residential |
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S_hlft DR technical potential shows £ 150 me= A
similarly strong growth towhatwe ¢ = N N T O mm i/
saw for shed, with somewhat i, 7 e i I e
larger growth in space and water § = _ _ _ _ L e g e g
heating end uses and a more
steady contribution from space $30 2040 / 2050 /
cooling 2300 N | I | 1 1l
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The value of shift DR

Shift DR can provide value by offsetting the need
for flexible generation capacity to manage steep

ramps
2030 “ ------- Res. BTM batt.
California utilities have flexible resource adequacy T R
requirements, but there is no value stream for this I
in the ACC (instead all capacity value is assigned )
to peak hours) - ....... .|l.|.l. .......... {I ..................................................
T | ,,l'
Adding this source of value could significantly :--f:.':---,;,--.é/.- _____________
boost the estimated avoided costs from shift DR = | | 1_1_
We calculate alternative resource estimates at the
equivalent cost of BTM batteries, as an upper
bound on the cost-effective shift resource
g8 ENERGY TECHNOLOGIES AREA 33
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The shed implications of shift

c12 ¢ Shift price ($/kWh/yr)
. . \J

Any resource that can shift can also 147 e o 0
shed, by definition S, S * 100

=7 : . 200
We can estimate the shed potential of ~ & o y v 300
a shift resource by computing the shed 3 - AA ' e 400
resource for all technology-cluster S g e A g e 500
combinations in the shift supply curve 2 mA Year

2 6 a ‘ ‘ o 2025
Roughly speaking, there is 1 kW of 2 P m 2030
shed resource enabled for every 2-3 g 4- oty A 2040
kWh of shift DR S ¢ 2050

2_
Accounting for the value of this shed -
resource can boost the cost- 0+ , : : :
i i 0 10 20 30 40
effectiveness of shift Procured shift resource (GWh)
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Summary of Shed and Shift

potential through 2050

® Rapid growth in load leads EV
charging to become the dominant
resource by 2050

® There is also significant growth from
electrified space and water heating

® Industrial and ag loads are steady
contributors

¢ Significant shed potential also exists
from refrigeration and electronics

® Alarge gap (~5x) exists between the
economic potential for DR and what
would be captured with circa 2019
enroliment rates

MW ENERGY TECHNOLOGIES AREA
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Shed DR Potential

[T] ] BAU Achievable
\:’ Economic
[TT 1
- [T 1
T [T 1
10.0 12.5 15.0 17.5 20.0
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Shift DR Potential

2025

Additional resource at the BTM
battery cost level
2030

2040

2050

I
0 5 10 15 20 25 30 35
GWh

[ Ag Pumping I Com Other HVAC [N MHDEV [ Res LDEV
Com Cooling [ Com Refrigeration [ Res Appliance [ Res Lighting
I Com Electronics [ Com Water Heating [ Res Cooling [ Res Pool and Spa
Hll Com Heating [ Ind Process [ Res Electronics [ Res Refrigeration
3 Com LDEV I Ind Pumping I Res Heating [ Res Water Heating
[ Com Lighting
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Example enabling BAU Achievable Potential Economic Potential
technologies: LDEV

Shed

2025

charging

2030

* As one might expect, connected
charging infrastructure are an
important part of enabling EV
charging flexibility

2040

2050

00 02 04 06 08 1.0 12
* But we find that more costly Gw
options are also often cost- BAU Achievable Potential Economic Potential
effective, given the large loads 2025 2025 Shift
they can enable:

— Building new workplace 2030
charging infrastructure
can shift loads off peak 2040

— Adding gateways for 2050
vehicle-to-building

2030

2040

2050

Charglng can prOV|de 0.0 0.2 0.4 0.6 0.8 1.0 12 14
. GWh GWh

substantial shed

resources B Build workplace charging and incentivize charging there
= Level 1 charging with a smart outlet
I Connected L2 EV charger, commercial
B Connected L2 EV charger in a multifamily building

s i EJ:E&?LIECHNOLOGIES AREA = Connected L2 EV charger, residential single-family 36

B Connected L2 EV charger, residential single-family, with gateway for V2B discharge




Example enabling

BAU Achievable Potential

Economic Potential

technologies: space
conditioning

2025

2030
* Although we saw that the shed 2040
resource from cooling declines

significantly, smart thermostats 2020

and energy management 0.0

systems remain important due

01

BAU Achievable Potential

02
GW

to the growth in potential from

space heating 202

. 2030
* These technologies are also a

rapidly growing source of shift
potential.

2040

2050

2025

2030

2040

2050 Shed
03 0.4 00 05 10 15 20 25 30

GW
Economic Potential
2025 Shift

2030

2040

2050
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0.02

0.04

GWh

15 2.0 25 30 35 40

GWh

0.08 0.10 0.12 00 05 1.0

com: Smart thermostat - commercial

com: Energy management system for HVAC

com: Thermal energy storage for HVAC -- commercial

res: Programmable communicating thermostat in a residential building

res: Manual thermostat adjustment 37




Discussion
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Notable demand-responsive

end-use Significant Rapid growth to Also growing in Less important Neenvggle:ra:naey
across all years dominance importance over time loads 9
Steady Emerging Declining Development

Workhorses Performers Resources Opportunities

* Ind Process « MHDEV charging « Com LDEV « Space cooling * Lighting

« Ag Pumping . Res LDEV charging (for shed) * Electronics

* Com charging * Res water * Res refrigeration
Refrigeration * Res water heating (for shed) (for shift)

« Res cooling (for heating (for shift) * Res space
shift) heating

* Res refrigeration * Res appliances
(for shed) « Com water

* Electronics (for heating
shed) « Com space

* Res lighting (for heating
shed)

* Pool/spa

« Commercial air
handling

PN ENERGY TECHNOLOGIES AREA -
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Notable DR-enabling
technologies

Flexible EV Connected Connected
chargers water heaters outlets

» Even costly options * Both integrated and * Enable a wide variety
may be cost-effective add-on controls of plug loads

Smart Energy mgmt. Thermal energy
thermostats systems storage

* For both heating and * For both heating and * For commercial
cooling cooling refrigeration

Remote ag Conlnected
pumping appliances

controls » Especially dryers
"N ENERGY TECHNOLOGIES ARI ° SB 49 "
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Barriers to DR realization and

paths to overcoming them
. . + Current financial incentives may not be worth the effort
Customer incentives  Explore new engagement strategies and non-financial incentives
Complex DR program - Many program options, complex rules for eligibility
landscape « Streamline program structures (e.g., dynamic pricing)
Customer structural » Technical and organizational constraints on flexing certain loads
i * Develop new technologies; provide organizational support
arriers

Access to automation + Adopting and utilizing technology may be challenging
technology » R&D to improve cost and ease of use; SB 49 standards

Measurement * Current baselining methods can underestimate response
methodologies * Improved baseline estimation using AMI data modeling

* Lack of flex-capacity value may under-compensate shift DR
 Develop frameworks for valuing flexibility specifically
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* Phase 4 of the California DR Potential Study provides an updated view of future DR
resources in California with a dramatically expanded scope including expanded modeling of
electrification, forecasts through 2050, and analysis of technical, economic, and achievable
potential

* Growth in renewables and electrified loads will drastically alter the DR landscape by 2050,
with major shifts in the seasonality of system peaks and extreme growth in the need for
flexible generation

* Loads with year-round availability will provide stable DR resources, while the value of
seasonal loads like cooling may diminish, especially for shed DR

* EV charging and other electrified loads will rapidly grow to become dominant sources of DR
potential by midcentury

—Significant investment in flexible EV charging infrastructure will pay dividends

* There is a significant (~5x) gap between the available potential and what is achieved by
programs with current enroliment rates; improving on this is a key area for development

* Developing a framework to appropriately value shift DR is another important challenge
* Dynamic electricity pricing shows promise as an alternative pathway to capturing DR
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Contact
Sarah Smith sismith@Ibl.gov
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Resources

¢ DR Potential Study Website (all reports and data download pages):

— https://buildings.lbl.gov/potential-studies

d CEC Load Shift Goal:
— htips://www.enerqy.ca.gov/publications/2023/senate-bill-846-load-shift-goal-report

®  CalFlexHub
— https://calflexhub.lbl.gov/

¢ Dynamic Pricing Bill Impacts Study
—  htips://eta-publications.Ibl.gov/publications/potential-bill-impacts-dynamic
®  Load Shape Clustering Paper
—  htips://emp.lbl.gov/publications/multi-level-load-shape-clustering-and
®  Contact
—  Sarah Smith, sjsmith@Ibl.gov
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