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Retrofitting building systems is known to provide cost-effective energy savings. However, prioritizing
retrofits and computing their expected energy savings and cost/benefits can be a complicated, costly,
and an uncertain effort. Prioritizing retrofits for a portfolio of buildings can be even more difficult if
the owner must determine different investment strategies for each of the buildings. Meanwhile, we
are seeing greater availability of data on building energy use, characteristics, and equipment. These data
provide opportunities for the development of algorithms that link building characteristics and retrofits
empirically. In this paper we explore the potential of using such data for predicting the expected energy
savings from equipment retrofits for a large number of buildings. We show that building data with sta-
tistical algorithms can provide savings estimates when detailed energy audits and physics-based simu-
lations are not cost- or time-feasible. We develop a multivariate linear regression model with
numerical predictors (e.g., operating hours, occupant density) and categorical indicator variables (e.g., cli-
mate zone, heating system type) to predict energy use intensity. The model quantifies the contribution of
building characteristics and systems to energy use, and we use it to infer the expected savings when
modifying particular equipment. We verify the model using residual analysis and cross-validation. We
demonstrate the retrofit analysis by providing a probabilistic estimate of energy savings for several hypo-
thetical building retrofits. We discuss the ways understanding the risk associated with retrofit invest-
ments can inform decision making. The contributions of this work are the development of a statistical
model for estimating energy savings, its application to a large empirical building dataset, and a discussion
of its use in informing building retrofit decisions.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings account for roughly 40% of total energy end-use and
roughly 40% of carbon dioxide emissions in the United States [1].
Newly-constructed buildings tend to be more energy efficient than
existing buildings, but replacement of old buildings by new build-
ings is very slow (roughly 2% per year). In order to meet energy
reduction goals, rapid improvement of building energy efficiency
is needed [2]. Compared to replacing old buildings with new build-
ings, retrofitting existing buildings is a viable approach to reducing
energy use because of relatively low cost and potentially high
adoption rates [3]. Recently, government programs are providing
significant financial support for building retrofit programs.
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The goal in a retrofit project is to reduce energy use (and energy
costs) while maintaining or improving levels of indoor air quality
and occupant thermal comfort [4]. The retrofit process typically
entails energy auditing and savings estimation, implementation
of the retrofit, then post-retrofit measurement and verification.
During auditing, building data and characteristics are analyzed to
identify areas of energy waste. Based on these results, retrofit
options and proposed and compared based on their projected cost
and resulting energy savings. The selected retrofit is then imple-
mented, and measurement and verification is used to verify that
projected energy savings were achieved and occupant comfort
was maintained [3].

While energy efficiency retrofits help reduce energy use, build-
ing owners primarily consider retrofit implementation as a finan-
cial decision. Building equipment retrofits can reduce energy
costs significantly and can increase the value of buildings in real-
estate markets [5]. However, they can be costly to implement.
Unfortunately, lack of information about energy savings is a major
barrier to investment in retrofits (i.e., building owners are less
likely to invest if the return on investment is poorly understood).
Methods are needed to identify the most cost-effective retrofits,
and to provide measures of confidence in the expected savings.
This is a difficult proposition because savings estimates contain
substantial uncertainty due to climate, behavior, building-specific
characteristics, and complex interactions between these effects. It
would be beneficial if retrofit implementation were integrated into
a framework in which the costs and benefits can be evaluated
objectively and quantitatively. To do so would require a new view
of how retrofits and valuations are made. We contend that a
promising approach is to treat retrofit analysis from a probabilistic
point of view, i.e., to characterize the relationship between system
design and the likelihood of achieving energy savings.

Meanwhile, market, technology and policy drivers (e.g., smart
meters, disclosure laws) have resulted in widespread collection
of measured data on building characteristics and energy use. The
availability of these data has grown in recent years, and is likely
to continue growing. These data provide opportunities for the
development of algorithms that use empirical data to estimate
energy savings associated with building retrofits. These data can
improve understanding of design trade-offs. However, realizing
their full utility is an important research priority. A probabilistic
approach could be employed to assess the risks of uncertainty.
Models that can quantify uncertainty enable building owners to
assess energy efficiency opportunities, forecast project perfor-
mance, and quantify performance risk using empirical building
data.

The remainder of this work is organized as follows: Section 2
summarizes previous methods for predicting savings due to retro-
fits. Section 3 introduces the Building Performance Database and
the subset of the database used for analysis. Section 4 presents
the multivariate linear regression model developed to estimate
energy use, and Section 5 describes how this model is used to pre-
dict savings due to implementing retrofits. Finally, Section 6 dis-
cusses how savings predictions can be used to inform decision
making.
2. Methods for predicting savings

Building energy consumption is influenced by several complex
and interactive effects, ranging from weather and building envel-
ope design to HVAC systems and occupant behavior. Understand-
ing the influence of these effects on energy use is typically done
using building energy models. These modeling methods generally
fall into three computational categories: (1) physical models (e.g.,
DOE-2, EnergyPlus), (2) statistical models, and (3) hybrid models.
Physical models are typically constructed by summing the heat
and energy flow into and out of a building and determining analyt-
ical relationships between various building components. Statistical
models identify correlations between building properties and envi-
ronmental conditions and historical energy use data. While they
typically do not require detailed understanding of building physics,
they do require collection of data to train the statistical model.
Hybrid approaches attempt to leverage the benefits of both physi-
cal and statistical models by modeling the physical interaction
between building components but using data to train models of
individual components and systems [6,7].

Significant research has been done on predicting the effects of
building characteristics and equipment on energy use using
physics-based models. A discussion of energy simulation tech-
niques and tradeoffs is provided by Siddharth et al. [8]. Many such
methods simulate energy use for case studies of specific building
types and climates. For example, Al-Ragom [9] models a house in
a hot and arid climate using DOE-2, Ascione et al. [10] model a his-
torical building in Italy using EnergyPlus, Rahman et al. [11] model
an office building in Australia using a front-end to EnergyPlus, and
other authors take similar approaches [12–15]. Rather than partic-
ular buildings, some methods analyze archetypal buildings and
environments [16,17]. For example, Chidiac et al. [18,19] classify
buildings as one of three types based on construction year and
building characteristics. Other researchers treat energy retrofits
as a multi-objective optimization of energy savings, retrofit costs,
and other factors, and use physics-based models to predict energy
use [20–23].

There is also prevalent research using statistical models with
building characteristics and equipment as predictors of energy
use. Some methods focus on predicting energy use, but do not
thoroughly discuss prediction of retrofit savings [24–26]. Other
methods focus on only specific building types and environments.
For example, Beusker et al. [27] focus on heating energy in sports
facilities and schools, Kolter and Ferreira [25] focus on residential
buildings in Massachusetts, and Hsu focuses on buildings in New
York City in both [28,29]. A variety of different types of statistical
models are used in the literature. Kavousian et al. [30] use stepwise
selection to choose predictors in a multiple linear regression
model, and use factor analysis to remove collinearity between pre-
dictors. Baker and Rylatt [31] use clustering, simple regression, and
multiple regression. Hsu uses a Bayesian multilevel regression
model in [28] to analyze the value of different measurements for
predicting energy use, and finds that benchmarking data alone
explains energy use as well as benchmarking and auditing data
together. In [29], Hsu discusses selection of predictors, develops a
hierarchical penalized regression model, and uses cross validation
to compare it to other models.

Literature on hybrid approaches to energy savings modeling is
also common. For example, Heo et al. [32] calibrate parameters
in physics-based normative energy models using Bayesian
methods.

Some techniques for predicting retrofit savings do not use phys-
ical, statistical, or hybrid models. Both Kumbaroğlu and Madlener
[33] and Menassa [34] approach energy retrofits from an economic
and financial perspective. While significant, they do not thoroughly
discuss methods for predicting energy savings. Other researchers
predict energy savings using pre- and post-retrofit measurements
of energy use, both for small case studies [35] and for large groups
of buildings taking place in retrofit programs [36].

While existing methods for predicting retrofit savings are useful
in some contexts, they have their faults. Uncalibrated physical
models are often inaccurate, and hybrid approaches that calibrate
physical models are often subjective and overly dependent on
engineering judgement [37]. Often, the time, cost, and expertise
needed to construct and use a detailed physics-based simulation
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model or a hybrid model is considerable when compared to the
expected cost savings due to implementing a retrofit. Typically, it
is not until after a detailed model is built that a building owner will
know if the expected savings justified the cost of the model.
However, large databases of building characteristics and energy
use are becoming more widely available, indicating the use of sta-
tistical models for predicting retrofit savings as the more cost-
effective approach. In addition, many physical models fail to quan-
tify uncertainty in savings predictions, whereas most statistical
models are by their nature capable of estimating uncertainty on
predictions. Furthermore, using empirical data may account for
factors that are prohibitively difficult to include in simulation
models (e.g., occupant behavior, unintended operation of building
systems, and interactive effects). Lastly, decision makers may be
more confident in savings estimates based on actual measured
data than those based on simulated data. Statistical models in
the literature are often significantly complex and are constructed
for specific building types and environments, meaning they are
not readily applicable to more general circumstances. Methods
based on data gathered before and after retrofit programs are
promising, but pre- and post-retrofit data are difficult to obtain,
and are typically only for specific geographic areas or retrofit types.
3. Data

3.1. Building Performance Database

The U.S. Department of Energy Building Performance Database
(BPD) contains measured data on energy consumption, character-
istics, and equipment for 870,000 buildings (742,500 residential
and 127,500 commercial). Data were collected from buildings all
over the U.S., with a large variety of building types, sizes, ages,
operational characteristics, and equipment. The data were submit-
ted by over 50 public, private, and government organizations;
some submitted data voluntarily, while some were obliged to by
local disclosure ordinances (e.g., New York, San Francisco, Seattle,
Washington D.C.). The BPD includes existing building databases
such as CBECS [38], RECS [39], and CEUS [40].

The BPD website [41] provides tools for visualizing the data in
the BPD, and the BPD application program interface (API) [42] pro-
vides developers with back-end access to the data. The BPD
enables users to compare the energy use and characteristics of
their building to other similar buildings, identify types of buildings
that will benefit from certain kinds of retrofits, and estimate the
energy savings expected as a result of particular retrofits. Lawrence
Berkeley National Laboratory (LBNL) develops the BPD API by
designing analysis tools and features that inform users while main-
taining data anonymity.

Data submitted to the BPD are cleansed and processed to ensure
they meet minimum requirements, are physically reasonable, and
are internally consistent; more details on the methods used can be
found in [43]. In [44], Mathew et al. describe cleaning and mapping
of data for the BPD, and summarize data distributions. Nearly all
buildings in the BPD contain the following information:

� one full year of energy use data (from electricity, natural gas,
and other sources),

� gross floor area,
� location information (zip code, city, state, ASHRAE climate
zone), and

� building use type (e.g., office, grocery store, single-family
house).

A small portion of the buildings have information on
� building systems (e.g., lighting, heating, cooling, windows),
� operational characteristics (number of occupants, operating
hours), and

� more (e.g., year built, ENERGY STAR rating).

The energy data in the BPD are aggregated into annual whole-
building energy use, separated into 4 types (electric, fuel, site,
and source), and reported as energy use intensity (EUI), rather than
actual energy use. Energy data are only allowed in the BPD if they
are measured; estimated energy totals are discarded. Aside from
energy data, the majority of the data are self-reported and may
not be entirely reliable. It is important to note that measuring
building information by surveying building owners introduces
uncertainty into the data, but the amount of uncertainty is
unknown. While the BPD contains a large number of buildings,
only approximately 5% have detailed information on building sys-
tems and operational characteristics.

3.2. Analysis peer group

In the analysis shown here, we focus on commercial buildings
with reported gross floor area, source EUI, number of occupants,
average weekly operating hours, and year built. We limit the anal-
ysis to buildings smaller than 300,000 ft2, with annual source EUI
less than 200 MW h/(1000 ft2), with fewer than 1000 occupants,
and built after the year 1900. For model simplicity, and to avoid
overfitting, we aggregate building type, heating type, cooling type,
lighting type, and wall type into broader categories than used by
the BPD, and we round year built down to the nearest 20 years.
The resulting peer group consists of 926 commercial buildings.

While this analysis is conducted for a wide variety of commer-
cial buildings, the methods described here are equally applicable to
other groups of buildings (e.g., buildings in a particular state or
buildings of a certain building type). The only caveat is the sparse-
ness of the BPD; selecting a more specific peer group often results
in too few buildings with reported data on the equipment types of
interest.

Fig. 1 shows the distribution of EUI for each building type. There
is a large range of median EUIs, indicating building type has signif-
icant influence on EUI. Food sales buildings have the highest med-
ian EUI, likely due to the significant amount of cooling necessary to
store food products. Intuitively, warehouses (the large majority of
which are not refrigerated) have the lowest median EUI. While the
distribution of EUIs for office buildings is centered fairly tightly
around 60 MW h/(1000 ft2), health care buildings have significant
variance around the median EUI despite having a substantial sam-
ple size.

Fig. 2 shows the distribution of EUI for buildings grouped by
their wall type. Relative to Fig. 1, there is a smaller range of median
EUIs, indicating wall type has a more subtle effect on EUI. Intu-
itively, window walls tend to have higher EUIs than buildings with
brick or concrete walls, but only marginally so. Most buildings with
unknownwall type have EUIs near 65 MW h/(1000 ft2), but there is
a significant number of outliers.

Fig. 3 shows the distribution of EUI for buildings grouped by
types of window layers. Relative to both Figs. 1 and 2, there is a
smaller range of median EUIs, indicating no clear relationship
between window layers and EUI. Contrary to intuition, buildings
with single-pane windows appear to have slightly lower EUIs than
buildings with double-pane windows (even though this difference
is likely not statistically significant).

Figs. 1–3 identify building characteristics that are commonly
associated with high and low EUI, but it is important not to over-
interpret these results; confounding effects can be disguised when
observing the dependence of EUI on only individual characteristics.
For example, Fig. 3 shows buildings with single-pane windows



Fig. 1. Boxplots showing distribution of annual source EUI for buildings of each use type, sorted by median value.

Fig. 2. Boxplots showing distribution of annual source EUI for buildings with each wall type, sorted by median value.
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have lower EUIs than buildings with double-pane windows. This is
unlikely because single-pane windows provide less thermal insula-
tion than double-pane windows. Instead, it may be that buildings
with single-pane windows tend to have other characteristics that
cause lower EUI (e.g., more moderate climates or lower occupant
density). These confounding factors are one of the reasons a multi-
variate regression model is needed.

4. Regression model

In order to estimate the energy savings due to implementing a
particular retrofit, we developed a multivariate linear regression
model that would:

� provide estimates of EUI based on empirical data while requir-
ing few modeling assumptions,
� isolate the effect of particular building characteristics and
equipment on EUI,

� be capable of predicting EUI for hypothetical combinations of
predictors that are not present in the database,

� provide estimates and residuals with well-understood statisti-
cal properties, and

� be robust, well-known, easy to use, and computationally
efficient.

A regression model was selected for this work, but we do not
imply this is the only or the best model for this purpose. We
encourage the investigation of alternate models.

Annual source EUI was chosen as the response variable of the
regression model because it allows direct comparison of both large
and small buildings and buildings that use multiple fuel sources
(electricity, natural gas, fuel oil, etc.). Utilizing annual totals for
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Fig. 3. Boxplots showing distribution of annual source EUI for buildings with each type of window layers, sorted by median value.
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energy use obscures seasonal variation in energy use and savings,
but since practitioners are typically interested in long-term energy
savings, annual totals are appropriate for this analysis. The predic-
tors in the regression model encompass most of the data fields in
the BPD, and were chosen based on a combination of physical intu-
ition, correlation analysis, and availability of data. For example, it is
intuitive that climate will impact a building’s EUI because a signif-
icant portion of energy use in commercial buildings is due to heat-
ing and cooling; thus, climate was chosen as a predictor. Similarly,
heating, cooling, and lighting systems will impact energy use, so
they were chosen as predictors. Other predictors were chosen by
observing the correlation between them and EUI (e.g., see Figs.
1–3). Fig. 4 shows that source EUI is somewhat correlated
(q ¼ 0:35) with operating hours. This level of correlation for a peer
group containing 926 buildings is evidence for a linear relation-
ship; therefore operating hours was chosen as a predictor. Some
fields were not chosen because very few buildings reported data
(e.g., LEED score, wall insulation). Some fields are highly correlated
Fig. 4. Scatterplot of source EUI and average weekly operating hours, with Pearson
correlation coefficient q.
with other fields (e.g., wall type and roof type), so only one of the
fields was chosen. Since floor area was used when normalizing
energy use to EUI, and since EUI and floor area are very weakly cor-
related, floor area was not chosen as a predictor. Since energy use
was normalized by floor area, number of occupants was also nor-
malized and occupant density was chosen instead. The numerical
variables operating hours and occupant density are centered by
subtracting the mean then normalized by dividing by the standard
deviation so that all model coefficients will be in the same units
and can be compared to one another more easily. The numerical
variable year built is rounded down to the nearest 20 years and
treated as a categorical variable because this allows a nonlinear
relationship between EUI and year built.

The regression model includes a constant term, one predictor
for each of the numerical variables (occupant density and operat-
ing hours), and several predictors for each of the categorical vari-
ables (year built, building type, climate zone, heating type,
cooling type, lighting type, air flow control type, wall type, window
type, and window layers). For numerical variables, the predictor in
the model is centered by subtracting the variable’s mean then
dividing by its standard deviation. For categorical variables, the
predictors in the model are indicator variables. For a categorical
variable with N possible values, the model contains N � 1 indica-
tors associated with that variable. This prevents linear dependence
between categorical variables. The contribution of the Nth value of
each categorical variable to EUI is captured in the constant term b0,
and the model is still capable of predicting EUI for a building with
the Nth value of a categorical variable. The values of the categorical
variables are listed in the appendix, with the Nth value listed last.

We experimented with several alternate forms of the regression
model. We tested using the logarithm of EUI instead of just EUI and
we tested nonlinear functions of the other numerical variables, but
none of these models predicted EUI significantly better than the
selected model. We observed a slight increase in accuracy when
predicting EUI for buildings used to fit the model, but not when
predicting EUI for buildings not used to fit the model; this indi-
cated overfitting was likely. We also experimented with model
terms that combined multiple predictors. Intuitively, the efficiency
of a building’s heating system will have less impact on EUI if the
building is in a mild climate, so we evaluated the use of indicators
for combinations of heating type and climate zone. While this form
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of the model provided a mildly better fit to the data, the coefficient
estimates for many combinations were based on very few data
points, and overfitting was again a concern.

The model was fit to the 926 buildings in the peer group
described in Section 3.2 using ordinary least squares (i.e., minimiz-
ing the sum of the squared residuals). Residual analysis methods
were used to confirm the assumptions made in using a linear
regression model were not violated: the distribution of residuals
is approximately normally distributed with zero mean and there
is no apparent correlation between model predictions and exter-
nally studentized residuals (see [45]).

Considering the large number of predictors in the model, multi-
collinearity between predictors was also investigated. We con-
firmed the predictor matrix is full rank and that the condition
number of the predictor matrix (78.24) is not too large [45]. We
also computed variance inflation factors (VIFs) for each of the pre-
dictors [45]. A regression model with moderate multicollinearity
can still be useful, as long as extrapolation is not done using the
predictors exhibiting multicollinearity. Therefore, predictors with
unreasonably high VIFs (i.e., greater than 10) were removed from
the model, and predictors with moderate VIFs (i.e., greater than
5) were marked and excluded as potential retrofit values, but were
kept in the model. For example, some climate zones were found to
be moderately correlated with heating and cooling types, so heat-
ing and cooling retrofits are not considered, but since window and
wall characteristics showed little correlation with other predictors,
model predictions for hypothetical values of these variables can be
trusted.

Finally, the model was verified using cross-validation: the
model was fit to several randomly-selected subsets of the data
and the resulting predictions for the remaining data were com-
pared. The accuracy of the predictions was not significantly differ-
ent when different subsets of data were used to fit the model.

Fig. 5 shows EUI predicted by the model for all buildings in the
peer group plotted against measured EUI for the same buildings.
The blue line has zero intercept and unity slope, representing all
values where model predictions are equal to measurements.
Overall, the model does a reasonable job of predicting EUI
(R2 ¼ 0:40), despite underpredicting (points below the blue line)
Fig. 5. Model predictions of EUI plotted against measured EUI for each building in
peer group (black circles), with coefficient of determination R2. The blue line
represents all points where the model prediction is equal to the measurement. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
for higher EUIs and overpredicting (points above the blue line)
for lower EUIs. The difference between model predictions and
measurements could be due to many factors: the data may contain
errors due to self-reporting, variables that influence EUI may not
be measured and thus are not in the model, and the form of the
model may not reflect the true behavior of the buildings. It is pos-
sible that other models would predict EUI more accurately, but
these models may be more complex and difficult to develop. An
important aspect of this work is that model uncertainty is propa-
gated into the savings estimates described in Section 5. Depending
on the cost of the retrofit being considered, a building owner or
policy maker may not be satisfied with the level of uncertainty
in the savings estimates and may decide that development of a
more accurate model to help reduce uncertainty is worthwhile.

Fig. 6 shows the resulting model coefficients. Each coefficient is
represented by its expected value and the 95% confidence interval
on its estimated value [45]. Coefficients with expected values to
the right of the dotted line are associated with larger values of
EUI, while coefficients to the left are associated with smaller val-
ues. Coefficients with wide confidence intervals are estimated less
precisely than those with narrow confidence bands. For example,
higher occupant density and operating hours are associated with
higher EUI, and their estimates are quite precise compared to the
other coefficients. Coefficients for numerical variables are esti-
mated more precisely than categorical variables, likely because
every building has data for the numerical variables, but there are
few buildings with a particular value of a categorical variable.
The high variability in the constant coefficient is likely due to the
same effect because it encompasses a combined effect on EUI of
all of the categorical variables.

The resulting model coefficients are not always consistent with
other analyses. As indicated in both Figs. 2 and 6, buildings with
window walls have higher EUI than buildings with concrete or
brick walls. However, contrary to Fig. 3 but consistent with physi-
cal intuition, Fig. 6 indicates buildings with single-pane windows
have higher EUI than buildings with double-pane windows. This
illustrates a key feature of this regression model: it can isolate
the effects of multiple parameters when confounding effects are
present.
5. Savings predictions

The coefficients in Fig. 6 can be used not only to compare the
relative contributions of different building characteristics and
equipment; they can also be used to predict EUI for buildings with
hypothetical combinations of the model predictors. For example,
the database may not contain any buildings with both double-
pane windows and no heating system, but the model has predic-
tors for both and therefore can predict the EUI for such a building.
In order to estimate the energy savings due to retrofitting a partic-
ular building component, the approach can first be used to predict
EUI for a hypothetical building with the old component, then to
predict EUI for a building with the new component, and the differ-
ence between the predictions can be interpreted as the savings.

While estimating savings and individual building may be useful
in some contexts, policy makers or building portfolio owners may
be interested in the savings expected when applying retrofits to
several buildings. To estimate the savings for an entire peer group,
we create a hypothetical pre-retrofit peer group where each build-
ing is identical to the actual building, except for the value of the
variable representing the retrofit. Likewise for a post-retrofit peer
group. For example, consider estimating savings when retrofitting
single-pane windows to double-pane windows, and say the actual
database contains a 50,000 ft2 office building in climate zone 4C
with multi-layered windows. The pre-retrofit peer group will



Fig. 6. Mean and 95% confidence interval of estimates of regression model coefficients.
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contain a corresponding 50,000 ft2 office building in climate zone
4C, but it will have single-pane windows, and likewise for the
post-retrofit peer group and double-pane windows. For every
building in the peer group, EUI is predicted for the corresponding
buildings in the pre- and post-retrofit peer groups, and the differ-
ence between those predictions (normalized by the pre-retrofit EUI
prediction to yield a relative change) is tabulated. The collection of
these differences can be interpreted as samples from a distribution
of savings from the buildings in the peer group. Once the distribu-
tion of savings is computed, it can be inspected to make statements
about the likelihood of achieving particular levels of savings. For
example, if the first quartile of the savings distribution is 10%, there
is a 75% chance that a building from the peer group will reduce EUI
by at least 10% of pre-retrofit EUI when implementing the retrofit.

Fig. 7 shows a histogram of estimated EUI savings for buildings
in the peer group when changing from window walls to concrete
walls. It is unlikely that a building owner would actually undertake
a retrofit as serious as modifying the walls of a building, but the
results can be used to compare EUI for buildings with the two wall
types. Intuitively, buildings with the more insulative concrete



Fig. 7. Histogram of estimated savings due to retrofitting walls from window walls
to concrete. Savings are expressed as the difference between pre- and post-retrofit
EUI, as a percentage of pre-retrofit EUI.
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walls have lower estimated EUIs (positive savings). The savings
estimates are reasonable based on physical intuition, i.e., half of
the buildings save between 9% and 17%. The highest savings
predicted by the model are over 60%, contrary to physical intuition,
but only a small proportion of buildings have such high savings
estimates.

Fig. 8 shows a histogram of savings estimates for the peer group
when retrofitting from single-pane windows to double-pane win-
dows. Retrofitting windows in this way is commonly done; instal-
lation costs are typically reasonable, the effect of the retrofit on
energy use is intuitive, and achieved savings are predictable. The
model predicts savings between 16% and 28% for roughly half of
the buildings, and no buildings are expected to use more energy
after the retrofit. Again, savings estimates are physically unreason-
able for only a small proportion of buildings.

The savings predicted by the model are consistent with physical
intuition in the majority of cases, but there are some cases where
Fig. 8. Histogram of estimated savings due to retrofitting windows from single-
pane to double-pane. Savings are expressed as the difference between pre- and
post-retrofit EUI, as a percentage of pre-retrofit EUI.
the estimates are clearly inaccurate. For example, the model pre-
dicts negative savings (increased EUI) for the majority of buildings
when retrofitting from T12 to T8 fluorescent lights. The savings
predictions may be inaccurate for a number of reasons:

� For certain types of equipment, there simply are not enough
buildings in the dataset for the model to characterize the effect
of the equipment on EUI very well. This effect is minimized by
preventing savings predictions for predictors with very little
informative data, but inaccuracy in the estimate for one model
coefficient can influence the estimates of all model
coefficients.

� There are probably building characteristics that influence
energy use, but are not included in the model because they
are not reported in the database. For example, the model
includes terms for occupant density and operating hours, but
the BPD doesn’t contain information on how many personal
computers, refrigerators, or space heaters are used in a building.
The effect of occupant behavior on energy use is not well known
[26,46], but may have large effect on energy use [47,46].

� Some of the predictors in the model may be strongly correlated,
causing the model to conflate the effects of the predictors. For
example, heating and cooling systems are often chosen based
on the local climate.

� The model assumes that the influence of different building char-
acteristics are independent of one another, but there may be
interactive effects. For example, the savings expected when ret-
rofitting a building’s heating system will be lower for a building
in a mild climate (e.g., San Francisco) than for a building in a
more extreme climate (e.g., New York). We experimented with
a model that uses indicators for combinations of multiple pre-
dictors, but the sparseness of the data prohibited this approach.

Savings estimates like those in Fig. 8 provide building owners
and policy makers with the information needed to intelligently
decide on retrofit investments. For each potential retrofit, stake-
holders can use these savings estimates to calculate a probability
distribution of energy cost reductions, and compare this to the cost
of implementing the retrofit. This allows potential retrofits to be
classified according to expected benefits, and according to the like-
lihood the actual benefits will deviate from the expected benefits.
A building owner will prefer a retrofit with high expected savings,
and low uncertainty in the savings estimates, but such a retrofit
may not exist. Rather, a building owner may have to decide
between a retrofit with high expected savings and high uncer-
tainty, and a retrofit with low expected savings and low uncer-
tainty. An investor may be willing to make a more risky
investment if the potential benefits are high enough. In addition,
these savings estimates can identify situations in which no invest-
ment should be made. Depending on the retrofit being considered,
the uncertainty in the savings estimates can be large relative to the
expected savings, and investing in such a retrofit may be as likely
to lose money as to make money.
6. Concluding remarks

This work explores the development of a model that provides
building owners and policy makers estimates of expected energy
savings that allow comparison of investments in energy efficiency
retrofits. A major factor limiting such investments is the uncertain
relationship between the amount invested and the energy savings
achieved. Our resulting algorithmic approach provides probabilis-
tic estimates of energy savings so that investors can properly
weigh risk. For example, the methods described here can answer
questions such as: What is the probability that upgrading my



Table 1
Values of categorical variables.

Variable Values

yearBuilt 1900–1920
1920–1940
1940–1960
1960–1980
1980–2000
2000–2020

bldgType Education
Food Sales
Food Service
Health Care
Lodging
Office
Other
Public Assembly
Retail
Service
Warehouse

climate 1A Very Hot - Humid (Miami-FL)
2A Hot - Humid (Houston-TX)
2B Hot - Dry (Phoenix-AZ)
3A Warm - Humid (Memphis-TN)
3B Warm - Dry (El Paso-TX)
3C Warm - Marine (San Francisco-CA)
4A Mixed - Humid (Baltimore-MD)
4C Mixed - Marine (Salem-OR)
5A Cool - Humid (Chicago-IL)
5B Cool - Dry (Boise-ID)
6A Cold - Humid (Burlington-VT)
6B Cold - Dry (Helena-MT)
7 Very Cold (Duluth-MN)
Unknown

heatType Boiler
Furnace
Heat Pump
Other Or Combination
Resistance Heating
Unknown

coolType Central Air Conditioning
Chiller
Heat Pump
Other Or Combination
Packaged Direct Expansion
Unknown

lightType Compact Fluorescent
Fluorescent
Incandescent
Other Or Combination
Unknown

flowCtrlType Constant Volume
Other Or Combination
Unknown
Variable Volume

wallType Brick
Concrete
Metal
Other Or Combination
Siding or Shingles
Unknown
Window Wall
Wood Walls

windowType Clear
Other Or Combination
Reflective
Tinted
Unknown

windowLayers Double-pane
Multi-layered
Other Or Combination
Single-pane
Unknown
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building’s heating system will reduce energy use by at least 15%?
Knowing the cost of the heating system upgrade and the price of
energy, an investor can directly answer the question: What is the
chance my investment will return a profit?

The techniques described here are useful for both individual
building owners, and for portfolio owners and policy makers.
Suppose a city or state official is interested in subsidizing energy
efficiency improvements to local buildings. Savings estimates for
various potential retrofits can be computed and compared to one
another. The official can identify retrofits that maximize savings
and choose to subsidize retrofits accordingly. By selecting an anal-
ysis peer group that reflects the local building stock, savings esti-
mates are tailored to the population of buildings in which the
retrofits would be implemented.

The method presented here is based on empirical data that is
available at low cost. Even for an individual building, completing
a detailed analysis and constructing a physical model to predict
energy consumption with different equipment can be costly and
time consuming. Building detailed models of a portfolio of build-
ings or of all the buildings in a city or state is clearly unfeasible.
This method for savings estimates does not require the time,
money, or expertise necessary for physical modeling.

In summary, this work expands the current state of research by
providing a methodology for investigating building energy retrofit
investments. We show how building data can inform a statistical
model that relates energy use to building characteristics. We show
how this model can be used to estimate the likelihood of imple-
menting candidate retrofits achieving a particular level of energy
savings. Lastly, we discuss how these savings estimates can be
used to compare different retrofits and can provide an understand-
ing of risk that is necessary for deciding on potential investments
intelligently.

Some of the inaccuracies in the regression model are due to lack
of data. While the BPD contains 870,000 buildings, this represents
less than 1% of the U.S. building stock [1], and only about 5% of
building in the BPD report building equipment information.
However, recent trends indicate the availability of building data
will rapidly increase in the near future. Since data are collected
from any contributor, there is no guarantee that the data in the
BPD are representative of the national stock, but in cities with dis-
closure ordinances (e.g., San Francisco, New York, Seattle, Wash-
ington D.C.), the BPD likely contains a near-complete sample of
commercial buildings. As the data in the BPD increase in both
quantity and quality, the regression model will become better able
to provide reliable savings estimates.

A significant improvement to this work would be verification of
savings predictions using detailed building information and mea-
sured energy data from before and after retrofit implementation.
Unfortunately, these data are not readily available. However, this
work has shown the potential benefits of retrofit savings estimates,
and thereby may motivate the collection of more data from actual
retrofit programs so that savings estimates can be further
validated.
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Table 1 lists the values of each of the categorical variables.
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