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Abstract

This report presents the empirical results of fitting proportional hazard prepay-
ment and default models to the termination performance of Fannie Mae multifamily
mortgages. Our empirical specification accounts both for proxies related to traditional
option exercise factors, such as the likelihood of monthly variation in negative equity,
proxied by the end-of-month loan-to-value ratio, and the differential between the con-
tract rate on the mortgage and the current 10-year Treasury rate. We also introduce
co-incident factors, double triggers, that are associated with shocks to electricity costs
and an energy efficiency measure that is associated with shocks to net cash. We find
that both the option exercise channel and the double trigger channels are importantly
associated with both prepayment and default. These results provide a novel extension
to the current literature on ”double trigger” controls for default, by showing that the
effect of shocks to energy factors on net cash is directly related to the 60-day distress
of the Fannie Mae multifamily mortgages in our sample and energy related factors also
affect prepayment.
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1 Introduction

Prior studies find mortgage defaults to be related to energy use and volatility (see, for

example, Issler, Mathew, Sun, and Wallace, 2017; Jaffee, Issler, Stanton, and Wallace, 2017)

and also show that energy ratings and use affect commercial building values (see, for example,

Eichholtz, Kok, and Quigley, 2010; Jaffee, Stanton, and Wallace, 2018). The motivation for

the study described in this report is to assess the impact of energy use on the default risk of

multi-family mortgage securitized by Fannie Mae between 2002 and 2020.

An important feature of the Fannie Mae multifamily mortgage data is the dominance of

prepayment in the observed termination behavior of these mortgages. For that reason, even

though the focus of our analysis is default, we follow standard methodologies to estimate

reduced-form mortgage termination models (see, for example, Ciochetti, Deng, Lee, Shilling,

and Yao, 2003; Clapp, An, and Deng, 2006; Deng, Quigley, and Van Order, 2000; Schwartz

and Torous, 1989; Stanton and Wallace, 2018; Titman and Torous, 1989) that account for

both prepayment and default. We include two measures related to energy consumption and

energy efficiency: i) a dynamic measure of the cumulative differential between the realized

and the pro forma electricity cost of the building which we call the electricity price gap; ii) a

static measure of property specific energy efficiency defined as the ratio of the mean utility

cost of the building divided by the mean of net cash flows. These new energy related metrics

are consistent with “double trigger” models of commercial default in which it is not just the

degree of expected negative equity of the borrower’s debt position (i.e. the relative value of

the asset to the mortgage value) that triggers default but also shocks associated with loss of

cash flow due either to loss of tenants, increases in operating costs, or both that stress the

borrowers ability, or willingness, to make the debt service payments (see, for example, An,

Fisher, and Anthony, 2015; An and Sanders, 2010; Capone and Golding, 2002; Riddiough

and Thompson, 1993).

One of the challenges of empirical models of prepayment and default includes the difficulty

of obtaining time varying information for the key determinants of these terminations events.

Traditionally, reduced form models include time-varying factors that proxy for the embedded

values of the prepayment and default options and the likelihood that these options will be

exercised. The two primary time varying proxies are i) the difference between the contract

rate on the mortgage and the current likely refinancing rate (usually assumed to be the 10

year Treasury rate) and ii) a proxy for negative equity, measured by a time-varying loan-to-

value ratio. Empirically, prepayment option exercise is consistently associated with elevated

levels of the coupon differential (see, for example, Deng et al., 2000; Schwartz and Torous,

1989; Stanton and Wallace, 2018; Titman and Torous, 1989) whereas negative equity has
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been found empirically to acts as a friction, or cost, on exercising the prepayment option (see,

for example, Clapp et al., 2006; Deng et al., 2000; Stanton and Wallace, 2018; Titman and

Torous, 1989). Symmetrically, exercise of the default option has been found to be positively

determined by proxies for negative equity as well as the level of coupon differential (see,

for example, Clapp et al., 2006; Deng et al., 2000; Stanton and Wallace, 2018; Titman and

Torous, 1989; Tu and Eppli, 2003). The “double trigger” default literature attributes default

incidence to the joint incidence of negative equity and other adverse shocks to net operating

income (example, An et al., 2015; An and Sanders, 2010; Capone and Golding, 2002; Foote

and Willen, 2017; Riddiough and Thompson, 1993). For commmercial real estate, the focus

of the adverse shocks has been on net operating income which was also an important focus

of (An et al., 2015) who focused on the dynamics of NOI for the Fannie Mae portfolio before

2000. Interestingly on average, utilities including water, natural gas, and electricity account

for 17.5% (standard deviation of 7.7%) of total operating expenses and the average operating

expense ratio (total operating expenses/Gross potential income) is 47.5% (standard deviation

of 13.2%) for our sample of Fannie Mae multifamily loans originated between 2002 through

2019. The focus of this paper is to control for both the option exercise related proxies and

the triggering effect of cash flow shocks associated with electricity costs and energy efficiency

on the default risk of our sample of 26,500 Fannie Mae multifamily loans.

This paper is organized as follows. We discuss the new Fannie Mae data in Section 2.

The measurement of the electricity price gap is presented in Section 3 and measurement

of the property-specific energy efficiency is present in Section 4. The time-varying loan-to-

value measurement is discussed Section 5. Section 6 presents the summary statistics for the

constructed Fannie Mae data set. The setup for the estimation of the proportional hazard

models of prepayment and default is presented in Section 7 and Section 8 concludes.

2 Fannie Mae multifamily data

Data for this analysis was obtained from Fannie Mae’s (FNMA) Delegated Underwriting and

Servicing (DUS) website. The program provides publicly available historical data containing

information related to loan origination, loan performance, property characteristics, and se-

curitization for commercial real estate mortgages. Fannie Mae’s DUS program is the largest

government-sponsored initiative for providing financing for multifamily properties, and the

data collected for this study represents a significant portion of the U.S. market. Appendix

A presents more details and references for Fannie Mae’s DUS program.
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For our study, we downloaded three distinct data sets 1:

• Combined loan origination, property characteristics, and securitization (deal/pool in-

formation) - this data set was constructed by downloading information from each indi-

vidual deal from January 2000 to December 2019 using the ’Advanced Search’ feature

provided by the website. It contains data for about 86,000 loans and properties.

• Loan Performance - this data set provides monthly performance data for individual

loans from January 2000 to December 2019. It contains historical information about

loan balances, as well as delinquency status. At the time of this study, the data set

covers about 51,000 loans 2.

• Property Financial - this data set contains additional information for properties col-

lateralizing the loans. It covers about 70,000 properties in the DUS website. For a

subset of about 36,000 properties, it lists utility expenditures, net cash flow, operating

expenses, and other relevant financial variables for the most recent years. As discussed

in section 4 below, this data set contains the information for calculating our measure

of energy efficiency, named as Scaled Utility Cost Index (Scaled UCI), computed as

the ratio of average yearly utility costs to the average yearly net cash flows for the

property.

We constructed the data for our analyses by merging these three data sources and filtered

for loans collateralizing multifamily property types originated on or after January 2002. This

yielded a sample of 26,500 loans.

Tables 5 in Appendix B shows geographic and year of origination distributions for the

merged and filtered data sets. The geographic location of properties covers all U.S. states

and the District of Columbia, but only 6 states account for about 50% of the loans. There is

also concentration on the distribution of year of origination, with the past 5 years accounting

for about 50% of the loans.

3 Measurement of the electricity price gap

In this study we construct the electricity price gap using the same approach as described

in Wallace, Issler, Mathew, and Sun (2017). This variable measures building-specific risk

1One must register to Fannie Mae’s website for downloading the data set. https://mfdusdisclose.

fanniemae.com/#/home. Accessed September 2020.
2Fannie Mae. Multifamily Loan Performance Data. https://capmrkt.fanniemae.com/portal/

funding-the-market/credit-risk/multifamily/loan-performance-data.html. Accessed September
2020.
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exposure driven by the volatile of electricity prices, its direct impact on the building financial

performance, and consequently property owner’s ability to serve the underlying mortgage.

The variable is constructed as the difference between the forecasted and actual electricity

prices of a building over the mortgage holding period. The electricity price gap is com-

puted by summing the deviations of the realized monthly energy prices from the “expected”

monthly prices anticipated by the borrower, and/or lender, at the time of mortgage origina-

tion. It captures the fact that during the term of the mortgage a high positive cumulative

price difference, or the electricity price gap, signals higher than expected total energy ex-

penditures since mortgage inception. This creates a cumulative deficit in NOI, which in turn

increases the likelihood of default.

Differing from Wallace et al. (2017), instead of using wholesale locational marginal prices

(LMP) for the property’s electricity Independent System Operator (ISO) zone, we build our

historical price data set using the commercial sector retail electricity prices as reported by

the U.S. Energy Information Administration (EIA) for the property’s state 3.

Formally, the time t electricity price gap for a commercial mortgage within a state k and

originated at a month/year t0 is expressed as

pgapk(t0, t) =
s=t∑
s=t1

Sk(s)− (Hk(t0))month(s), (1)

where t and s represent month/year cash flows for the loan, Sk(s) is the realized retail

electricity price for the commercial sector, measured in cents per kilowatt-hour, for state k

on month/year s. The second term accounts for the seasonality of electricity. In particular,

the term Hk(t0) is a twelve-element vector containing historical electricity retail prices for

the preceding year of the loan origination date t0. The function month(s) is used to index

the vector Hk(t0) for the corresponding month of year of s. More formally, month(s) ∈
{1, 2, ..., 12}. This indexing approach means that for each realized month/year price, we

are subtracting the anticipated pro forma expected price for the same month of the year,

and thus comparing the appropriate seasonal prices to each other (i.e. comparing pro forma

March prices to realized March prices and so on through the seasons). The full history for

the electricity price gap is computed by iterating t in Equation 1 from the month of loan

origination t0 to the month of loan termination T .

3EIA Electricity Data Browser. Average retail price of electricity to customer by end-use sector, and state.
https://www.eia.gov/electricity/data/browser/#/topic/7?agg=0,1&geo=vvvvvvvvvvvvo&linechart=ELEC.PRICE.TX-ALL.M~ELEC.PRICE.TX-RES.M~ELEC.PRICE.TX-

COM.M~ELEC.PRICE.TX-IND.M&columnchart=ELEC.PRICE.TX-ALL.M~ELEC.PRICE.TX-RES.M~ELEC.PRICE.TX-COM.M~ELEC.PRICE.TX-IND.M&map=ELEC.PRICE.US-

ALL.M&freq=M&start=200101&end=202004&ctype=linechart&ltype=pin&rtype=s&maptype=0&rse=0&pin=&endsec=vg . Accessed September 2020.
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4 Measurement of the property-specific energy efficiency

Previous studies of commercial mortgage defaults, such as Wallace et al. (2017), employ

Source Energy Use Intensity (Source EUI) as the building measure of energy efficiency.

Source EUI accounts for the total amount of raw fuel that is required to operate the building

per square foot including all transmission, delivery and production losses. Mathew, Wallace,

and Issler (2020) use Scaled Source EUI, a measure of Source EUI that is scaled to the the

Net Operating Income (NOI) of the property per square foot, as the primary measure of

energy efficiency. Their motivation for scaling Source EUI by NOI per square foot is that

this new variable is better able to capture the magnitude of the contribution of energy costs

to the borrower’s ability to serve the property mortgage. The higher the EUI (energy use

per square foot) the higher the energy costs per square foot, as compared to other more

efficient buildings. And, the higher the energy costs relative to NOI (both scaled by square

foot), the lower the ability for the borrower to pay its mortgage dues.

Our analyses use a more direct approach than Scaled Source EUI for measuring the

fraction of energy expenditures to NOI. As described in Appendix A, Fannie Mae’s DUS

data set provides information on the utility costs and net cash flows for the underlying

property in the Property Financial part of the data set. Though utility costs may include

other expenditures not related to energy, it represents for most cases a good approximation

for the total energy expenditures of the building. Also, net cash flow is a good approximation

of NOI. The ratio of these two variables, named Scaled Utility Cost Index (Scaled UCI), is

our variable of interest.

For a given property, the Property Financial section of the DUS data set reports utility

costs and net cash flows for multiple years 4. We construct our variable of interest by taking

the ratio of mean utility costs to the mean of net cash flows. Formally,

Scaled UCI =
Mean(UtilityCosts)

Mean(NetCashF lows)
. (2)

Similarly to Scaled Source EUI, this variable captures both, the energy efficiency of the

building and the energy cost contribution for NOI.

4Reported years may not necessarily coincide with the year of loan origination.
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5 Measurement of the loan-to-value ratio

Similarly to the electricity price gap and coupon gap, loan to value ratio (LTV) is a dynamic

(time varying) variable in our model. We estimate it for each month of the loan performance

data set by first deriving the property value at the time of loan origination using both, the

reported origination LTV and loan amount provided by Fannie Mae’s DUS performance

data. Formally,

Property V alue(t0) = LTV (t0)Balance(t0), (3)

where t0 is the year and month of loan origination. We then estimate the property value

for each subsequent period t by multiplying the property price at origination by the gross

rate of return of the Core Sector Green Street Advisors’ Commercial Property Price Index

(CPPI) 5. Dynamic LTV is derived, for each month, as simply the ratio of the loan remaining

principal balance, also reported on Fannie Mae’s performance data, to the to the estimated

property value,

LTV (t) =
Balance(t)

Property V alue(t0)× CPPI(t)/CPPI(t0)
. (4)

6 Fannie Mae summary statistics

Table 1 below tabulates the mean and standard deviations for the key variables of our study

computed the month the loan enters into, or maintains, one of the following situations: 1)

defaulted, characterized by a 60 days or more of delinquency, or a more severe event, 2)

prepaid, signaled by a prepayment or an early refinancing event, and 3) current, defined by

non-defaulted loans that are still outstanding or matured. Out of the 26,500 observations,

only 165 loans entered into a defaulted state. This small fraction can be explained, in part,

by the large number of loans that are still outstanding (current) in the data set. The latter

group shows a comparable mean loan age to those that defaulted and a lower age to those

on the prepaid group. This implies that there is a good chance that, in the future, some of

the non-matured current loans will be 60-plus days delinquent and ending up being added

to the statistics of the defaulted group.

Consistent with our intuition, these summary statistics show that defaulted loans have

a higher mean LTV than loans that are prepaid and current. They also show a lower mean

age when compared to loans that are prepaid. Mechanically, months to balloon payment

5Green Street’s Commercial Property Price Index (CPPI) https://www.greenstreetadvisors.com/

insights/CPPI. Accessed September 2020
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displays an opposite behaviour. As expected, the mean coupon gap is lowest for the prepaid

group, indicating that borrowers are taking advantage of low mortgage rates for refinancing

their loans.

It is interesting to note the counterintuitive mean for the electricity price gap for the

distressed group. Section 7 below discusses the results of the proportional hazard model

calibration. In particular, Table 4 shows that the coefficient for this explanatory variable

is higher for the defaulted loans than the prepaid loans. This indicates that after one

introduces additional controls, the conditional mean of the electricity price gap would display

a behaviour matching our intuition.

Table 1: Mean and Standard Deviation of Loans at Termination

Defaulted Prepaid Current Total

Loan Age (months) 51 77 50 57

(42) (37) (38) (39)

Electricity Price Gap (Cents/KWh) 5 50 26 32

(80) (101) (78) (85)

Loan to Value Ratio (LTV) 72.5 66.9 66.3 66.5

(8.2) (12) (12.1) (12)

Coupon Gap (%) 2.6 2.2 2.8 2.6

(1.1) (1.2) (0.8) (0.9)

Months to Balloon Payment 77 41 89 76

(66) (39) (60) (59)

Observations 165 6,763 19,572 26,500

Table 2 shows, for the same groups of loans, the mean and standard deviation of key

variables at the time of loan origination. Property value was derived as the ratio of the loan

amount to LTV. Similarly, NOI was derived as the product of DSCR to the annual debt

service, which is calculated as a function of interest rate, loan amount, and the amortization

term. The defaulted group shows a lower mean loan amount, property value, and NOI than

the means of other groups, implying that defaulted loans are more concentrated in smaller

size properties in the data set. Note also that defaulted loans have a higher mean LTV at

origination when compared to other groups. This is in accordance with our intuition that

lenders would require a higher mean coupon rate for underwriting such loans.
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Table 2: Mean and Standard Deviation of Loans at Origination

Defaulted Prepaid Current Total

Origination UPB ($000) 6,678 9,314 13,104 12,097

(10,055) (12,734) (19,440) (18,000)

Origination Property Value ($000) 9,112 14,134 20,249 14,134

(13,349) (20,944) (32,495) (20,944)

Origination NOI ($000) 675 998 1,210 1,152

(1,044) (1,447) (1,740) (1,669)

Origination LTV 72 67 66 66

(8) (12) (12) (12)

Origination DSCR 1.69 1.75 1.68 1.69

(0.59) (0.69) (0.54) (0.59)

Origination Coupon Rate (%) 5.39 4.79 4.51 4.58

(1.21) (1.14) (0.79) (0.90)

Months to Balloon 128 118 138 133

(54) (43) (55) (53)

Amortization Term (months) 357 336 312 319

(30) (86) (120) (112)

Observations 165 6,763 19,572 26,500

Table 3 shows that our measure of energy efficiency shows a much higher mean for the

distressed group than all other groups of loans. This suggests that less efficient buildings are

more prone to have their loans defaulted that those for more energy efficient buildings.

Table 3: Mean and Standard Deviation of Scaled UCI

Defaulted Prepaid Current Total

Scaled UCI 0.383 0.193 0.170 0.177

(0.612) (0.405) (0.148) (0.246)

Observations 165 6,763 19,572 26,500

7 Prepayment and default hazard estimation

As shown in Table 1, the dominant termination outcome in the Fannie Mae multifamily data

is prepayment with an unconditional loan-level average prepayment rate of 25%. In contrast,

default which we define as 60 day delinquent is significantly more rare with an unconditional

loan-level average default rate of .2% over the period from 2002 through May of 2020.

Another unfortunate feature of the data is that, although not evident in Table 1 the actual
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overall default rate in the data was closer to 1%, however, many of the defaulted observations

did not report their energy expenditures and were therefore not included in the estimation

data set of 26,500 multifamily loans. The prepaid loans did not exhibit similar patterns of

missing data. Obviously, the severe imbalances in the incidence of prepayment and default in

the data, raises questions concerning sample selection bias that will have to be addressed in

subsequent work. The imbalances also limited the application of a full competing risk model

with controls for the cross correlations of the residuals between prepayment and default, or

the sub-distribution hazards. Instead, we estimate time varying proportional hazard models

for prepayment and default. However, since our goal is just to predict the hazard rates, we

assume that default and prepayment are independent and model them without controls for

the sub-distribution hazards.

We use a method called episode splitting to estimate the prepayment and default model.6

For a each monthly interval, we account for characteristics of the economy during that month,

such as the current interest rate, and characteristics of the loan during that month, such as

its loan-to-value ratio. We include monthly measures of whether the loan either prepaid or

defaulted in that monthly interval. Due to the data limitations discussed above, our proxy

variable for energy efficiency, Scaled UCI, is an average for each loan and does not time vary

across months.

As shown, in Appendix C, although we are assuming that the loan-level covariates, νtk−1
,

vary over time, in our case they vary monthly, they are invariant between tk−1 and tk (i.e.

within a month). Since our ultimate interest is to use the hazard estimates7 as part of a

valuation exercise, we follow (Schwartz and Torous, 1989; Titman and Torous, 1989) and

assume that the baseline hazards, λ0pre,def (t), differ for prepayment and default but they are

both log-logistic. This functional form is consistent with the observation that all other things

equal, conditional terminations are typically low in the early years of a commercial mortgage,

then gradually rise over time, hit a maximum, and then gradually fall with seasoning. Given

these assumptions, the conditional survivor function for prepayment or default be written

as,8

Spre,def (tk|tk−1) = exp

(
−
∫ tk

tk−1

λ0pre,def (u)exp(βpre,defν(u))du

)

= exp

(
−exp(βpre,defνtk−1

)

∫ tk

tk−1

γpre,defppre,def (γpre,defu)ppre,def−1

1 + (γpre,defu)ppre,def
du

)
,

6Episode splitting is a method to reorganize the loan-level data into a set of n monthly time observations
for each loan (e.g. For a loan, that survives for 10 months that loan id would be measured as 10 separate
time observations with the same id but with time t dependent characteristics

7The hazard is the probability that the loan defaults on that month given that it has survived up to that
month, t.

8The survivor function is the probability that a mortgage ”survives,” or has not defaulted up to time t.
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where νt, are observed over time from the origination date on the mortgage until termination

due to a default event, defined as a 60 day delinquency, or prepayment event, or until the end of

the observation period May, 2020, if the loan is still extant on that date.

The time-varying covariate vector, νt, for prepayment and default includes monthly measures

the end-of-month values for the electricity price gap, the loan-to-value ratio, the coupon gap which

is the differential between the interest rate on the mortgage and the observed 10-year rate, and a

measure of the time in months until the full balance on the loan is due in full, the balloon date. We

also include a non-time varying proxy for the property’s energy efficiency as discussed in Section 4

and fixed effects for the year of origination and state in which the loan is located to control for

other sources of heterogeneity such as national and regional business cycle effects.

We report the estimation results for prepayment hazards in the upper part of Table 4. As

shown in the table, all of the covariates are statistically significant and have the expected sign. The

higher the loan-to-value ratio, the lower the hazard of refinancing, whereas the higher the difference

between the contract rate on the loan rate and the current 10-year Treasury rate, the lower the

prepayment hazard. The two important energy related cost and efficiency measures, the electricity

price gap and Scaled UCI, also have a positive effect on prepayment suggesting that building owners

are motivated to reduce their cost of debt by refinancing, or perhaps by refinancing to extract some

equity, when their energy related variable costs are high. As expected, prepayment is lower the

closer the loan is to its maturity date, or the the balloon payment date, since the shorter interval

of time before the full balance is due the lower the potential savings that could be achieved from

refinancing into a lower interest rate.

The estimation results for the default hazards are reported in lower part of Table 4. As ex-

pected, the loan-to-value ratio is positively and statistically significantly associated with the hazard

of mortgage default. The coupon gap, the differential between the contract rate on the mortgage

and the current 10 year Treasury rate is also statistically positively associated with higher de-

fault hazards. Similar to the prepayment result, the energy cost and efficiency measure are both

statistically significant and positively associated with the default hazard. The proxy for average

energy efficiency, scaled UCI, is shown to be a positive and statistically significant determinant of

the default hazard meaning that as the energy expenditures per square foot increase the default

probability rises. The electricity price gap is also shown to be a positive and statistically significant

determinant of default meaning that the greater the cumulative gap between the loan’s pro-forma

electricity cost estimates and the realized marginal price of electricity the higher the hazard of

default. Since most of these loans amortize over one horizon and are due in another, as shown,

the number of months remaining before the full balance of the loan is due is also a statistically

significant and negative factor in the hazard of default, meaning that the closer the loan is to it’s

balance due date (the balloon payment date) the higher the default probability.

Figure 1 presents the fitted log logistic baseline hazards for prepayment and default. The
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Table 4: Proportional hazard model estimates for the competing risk of pre-
payment and default. This table presents the coefficient estimates for a competing risk
proportional hazard model of prepayment and default for multifamily mortgages that were
originated and securitized by Fannie Mae between 2002 and 2020.

Prepayment
Coefficient Estimate Standard Error

γpre 0.03510*** 1.85E-07
ppre 7.426467*** 0.00005
Electricity price gap 1.49E-03*** 1.53E-07
Loan-to-value ratio -1.50E-02*** 9.30E-07
Coupon gap 0.510562*** 0.000013
Scaled UCI 0.060478*** 0.000015
Time to balloon 2.99E-02*** 5.36E-07
Year fixed effects Yes
State fixed effects Yes
Number of observations 26,500
Negative Log Likelihood 35,298.97
χ2

Default
Coefficient Estimate Standard Error

γdef 0.012176*** 0.000005
pdef 1.915758*** 0.000075
Electricity price gap 2.10E-03*** 1.91E-07
Loan-to-value ratio 0.029318*** 0.000001
Coupon gap 0.023145*** 0.000017
Scaled UCI 0.184623*** 0.000008
Time to balloon -2.11E-02*** 4.85E-07
Year fixed effects Yes
State fixed effects Yes
Number of Observations 26,500
Negative Log Likelihood 21,107.26
χ2

∗∗∗P < 0.01
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baseline hazard functions measure the probability of termination for either prepayment or default

under homogenous conditions, ν = 0. As shown in Figure 1, the baseline hazard for sixty day

delinquency, which is our measure of default, reaches a maximum at month 78 with an 1.017%

conditional probability of default. This maximum is about 27 months later than the unconditional

average of 51 months that is reported in the summary statistics in Table 1, and it is higher than

the average unconditional default rate of .62% reported in the table. The estimated baseline

hazard for prepayment reaches a maximum at 37 months from origination. This compares with

the unconditional average loan age at default of 77 months as reported in Table 1. The baseline

hazard maximum for prepayment as a function of time to maturity is 17.6%, which is lower than

the 25.5% average unconditional probability of prepayment reported in Table 1. Of course, these

baselines are proportionally shifted by the coefficient estimates for the time varying covariates to

obtain the monthly conditional probabilities of default and/or prepayment. The baseline hazards

do appear to capture the order of magnitude difference in the prepayment and default rates in the

Fannie Mae multifamily mortgages, the estimated average timing of the baseline option exercise is

more rapid.

Figure 1: This figure presents estimates for the log logistic baseline hazards of prepayment
and default for the Fannie Mae multifamily mortgages.

We find that the magnitude of the coefficient for energy efficiency is also significant. Various

studies have shown that building energy use can vary considerably from year to year just due to

operational factors such as occupancy, building facilities management and year-to-year weather

changes. Month-to-month variations can be even higher. A recent study of 1500 commissioning

12



projects showed median savings ranging from 5-14%, just from simple non-capital energy savings

measures such as equipment scheduling and thermostat settings (Crowe, Mills, Poeling, Curtin,

Bjørnskov, Fischer, and Granderson, 2020). The elasticity of the probability of default on or before

the balloon date is derived in Appendix D. Our model shows that a 10% increase in the utility

costs translates into a 12 bps shock in the probability of default on or before the balloon date. This

result suggests that utility costs are economically significant considering that the sample default

rate is 62 bps.

Overall, the estimated proportional hazard model results do suggest that the greater the cumu-

lative gap between the loan’s pro forma electricity cost estimates and the realized cost of electricity

the higher the hazard of default. In addition, we find that the effect of higher energy costs per dollar

of net cash flows, our proxy for energy efficiency, also significantly affects the survival rates of the

Fannie Mae multifamily mortgages. Both of these channels would directly affect the debt-service-

coverage ratios, which is a measure also found to be important in double trigger default models.

Given the statistically and economically significant coefficients on the energy efficiency measure,

Scaled UCI, and the electricity price gap as well as the proxies for option exercise these results

do support the arguments underlying the double trigger specifications for commercial mortgage

default. The novelty of our results is that the triggered shocks to net cash flow are associated with

measured energy factors.

8 Conclusions

This report presents the empirical results of fitting proportional hazard prepayment and default

models to the termination performance of Fannie Mae multifamily mortgages. Our empirical speci-

fication accounts both for proxies related to traditional option exercise factors, such as the likelihood

of monthly variation in negative equity, proxied by the end-of-month loan-to-value ratio, and the

differential between the contract rate on the mortgage and the current 10-year Treasury rate. We

also introduce co-incident factors, double triggers, that are associated with shocks to electricity

costs and an energy efficiency measure that is associated with shocks to net cash. We find that

both the option exercise channel and the double trigger channels are importantly associated with

both prepayment and default. These results provide a novel extension to the current literature

on ”double trigger” controls for default, by showing that the effect of shocks to energy factors on

net cash is directly related to the 60-day distress of the Fannie Mae multifamily mortgages in our

sample and energy related factors also affect prepayment.
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A Fannie Mae DUS Program Data Set

Initiated in 1988, Fannie Mae’s (FNMA) Delegated Underwriting and Servicing (DUS) program is

designed to provide affordable multifamily housing by providing financing for acquisition or refi-

nance of commercial real estate properties. FNMA has partnered with multiple lenders coordinating

their activities for underwriting, funding, and servicing loans for multifamily properties. Through

these lenders, FNMA either finances or guarantees the financing of different types of multifamily

properties including apartment buildings, manufactured housing communities, seniors housing, etc.

Eligible multifamily properties must be income-producing multifamily rental properties or cooper-

atives with a minimum of five individual units. DUS loan size ranges from $1 million to $50 million

and are generally non-recourse. Loans are pooled and securitized as single class CMBSs and carry

Fannie Mae’s guaranty of timely payment of principal and interest.

For a loan to be eligible to the DUS program, it must satisfy specific requirements for their

loan-to-value and debt-service-coverage ratios. In addition each property underlying the multifam-

ily loan is subject to three assessments: 1) a property appraisal conforming to Uniform Standards

of Professional Appraisal Practice (USPAP) standards, 2) an environmental assessment or an

American Society for Testing and Materials (ASTM) screen, and 3) a physical needs assessment per-

formed by qualified personnel designated by the DUS. More information about the DUS Program

can be found at https://capmrkt.fanniemae.com/resources/file/mbs/pdf/mbsenger-0819.

pdf.
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B Loan State and Year of Origination Distributions

Table 5: State and Year of Origination Distributions

State Loan Count % Cumulative % Year of Origination Loan Count %

California 4,764 18.0% 18.0% 2002 35 0.1%

Texas 3,890 14.7% 32.7% 2003 102 0.4%

Florida 1,366 5.2% 37.8% 2004 117 0.4%

New York 1,158 4.4% 42.2% 2005 167 0.6%

Washington 1,018 3.8% 46.0% 2006 241 0.9%

Georgia 986 3.7% 49.7% 2007 343 1.3%

Illinois 925 3.5% 53.2% 2008 705 2.7%

North Carolina 915 3.5% 56.7% 2009 984 3.7%

Virginia 675 2.5% 59.2% 2010 1,258 4.7%

Maryland 644 2.4% 61.7% 2011 1,578 6.0%

Ohio 642 2.4% 64.1% 2012 2,238 8.4%

Arizona 599 2.3% 66.3% 2013 2,161 8.2%

Colorado 571 2.2% 68.5% 2014 1,828 6.9%

Oregon 559 2.1% 70.6% 2015 2,340 8.8%

Pennsylvania 517 2.0% 72.6% 2016 2,698 10.2%

Michigan 477 1.8% 74.4% 2017 2,962 11.2%

Tennessee 466 1.8% 76.1% 2018 3,129 11.8%

South Carolina 456 1.7% 77.8% 2019 3,614 13.6%

Minnesota 430 1.6% 79.5%

Massachusetts 388 1.5% 80.9%

Missouri 357 1.3% 82.3%

Indiana 318 1.2% 83.5%

Alabama 317 1.2% 84.7%

Louisiana 314 1.2% 85.9%

Utah 309 1.2% 87.0%

Nevada 297 1.1% 88.1%

Wisconsin 285 1.1% 89.2%

Oklahoma 279 1.1% 90.3%

New Jersey 263 1.0% 91.3%

Connecticut 253 1.0% 92.2%

Arkansas 242 0.9% 93.1%

Kentucky 227 0.9% 94.0%

Kansas 217 0.8% 94.8%

Mississippi 182 0.7% 95.5%

District of Columbia 167 0.6% 96.1%

New Mexico 159 0.6% 96.7%

Iowa 136 0.5% 97.2%

Idaho 132 0.5% 97.7%

Nebraska 109 0.4% 98.1%

New Hampshire 86 0.3% 98.5%

Delaware 72 0.3% 98.7%

Rhode Island 64 0.2% 99.0%

Montana 53 0.2% 99.2%

South Dakota 44 0.2% 99.4%

West Virginia 36 0.1% 99.5%

North Dakota 35 0.1% 99.6%

Maine 29 0.1% 99.7%

Alaska 28 0.1% 99.8%

Hawaii 25 0.1% 99.9%

Wyoming 17 0.1% 100.0%

Vermont 2 0.0% 100.0%

Total 26,500 100.0%
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C The maximum likelihood estimator for time varying

covariates

To obtain the maximum likelihood function, we first redefine the survivor function in terms of

conditional probabilities as,

S(tk|tk−1) =
S(tk)

S(tk−1)
= exp

(
−
∫ tk

tk−1

λ(u)du

)
.

From Bayes Theorem, the survivor function is thus

S(t) =
N∏
k=1

S(tk|tk−1),

and the log-likelihood with episode splitting for each hazard is

lnL(θ) =
∑
i∈unc.

lnλ(ti) +
∑
j∈all

Nj∑
k=1

lnS(tk|tk−1).

Under the standard assumption that the covariates νtk−1
are invariant between tk−1 and tk, as-

suring so that the integral in the pseudo-survivor function has a closed form solution, and the stan-

dard assumption in mortgage termination models that the baseline hazard is log-logistic (Schwartz

and Torous, 1989)), then as shown in the text, the conditional survivor function can be written as,

S(tk|tk−1) = exp

(
−
∫ tk

tk−1

λ0(u)exp(βν(u))du

)

= exp

(
−exp(βνtk−1

)

∫ tk

tk−1

γp(γu)p−1

1 + (γu)p
du

)

the log of the conditional survivor function with episode splitting is thus,

lnS(tk|tk−1) = −
∫ tk

tk−1

pγ(γt)p−1

1 + (γt)p
eβνtk−1dt

= −eβνtk−1 [ln(1 + (γtk)
p)− ln(1 + (γtk−1)

p)] .

The log-likelihood function for a given independent risk, either prepayment or default, is
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lnL(θ) =
∑
i∈unc.

ln(pγ) + (p− 1) ln(γti)− ln(1 + (γti)
p) + βνti

−
∑
j∈all

Ni∑
k=1

eβνtjk−1 [ln(1 + (γtjk)
p)− ln(1 + (γtjk−1)

p)] ,

and the gradient of log-likelihood function is,

∂ lnL

∂γ
=

∑
i∈unc.

(
p

γ
−

tpi pγ
p−1

1 + (γti)p

)
−
∑
j∈all

Nj∑
k=1

e
βνtjk−1

[
tpjkpγ

p−1

1 + (γtjk)p
−

tpjk−1pγ
p−1

1 + (γtjk−1)p

]
∂ lnL

∂p
=

∑
i∈unc.

(
1

p
+ ln(γti)−

(γti)
p ln(γti)

1 + (γti)p

)

−
∑
j∈all

Nj∑
k=1

e
βνtjk−1

[
(γtjk)

p ln(γtjk)

1 + (γtjk)p
−

(γtjk−1)
p ln(γtjk−1)

1 + (γtjk−1)p

]

∂ lnL

∂βi
=

∑
k∈unc.

νitk −
∑
j∈all

Nj∑
k=1

e
βνtjk−1

[
ln(1 + (γtjk)

p)− ln(1 + (γtjk−1)
p)
]
νitjk−1

.

.

D Derivation for the elasticity of default probability

From standard probability results (Johnson and Kotz, 1969; Kalbfleisch and Prentice, 1980,

see,), the function

F (t) = Pr(T ≤ t) = 1− exp
(
−
∫ t

0

eβν(u)λ0(u)du

)
(5)

expresses the unconditional probability of a mortgage defaulting at time T on or before

an arbitrary time t, where β is a vector of coefficients for the proportional hazard model,

ν is a vector of time-varying explanatory variables, and λ0 is the modeled baseline hazard

function. As described in Appendix C, our study employs the log-logistic function for the

baseline hazard, which is defined as

λ0(u) =
γp(γu)p−1

1 + (γu)p
. (6)

The elasticity of the probability of default with respect to the non time-varying variable

Scaled UCI, denoted by ν0, is defined as

E(F (t))ν0 =
∂F (t)

∂ν0

ν0
F (t)

. (7)
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From equation 5,

∂F (t)

∂ν0
= −exp

(
−
∫ t

0

eβν(u)λ0(u)du

)
× ∂

∂ν0

[
−
∫ t

0

eβν(u)λ0(u)du

]
= −(1− F (t))× β0

[
−
∫ t

0

eβν(u)λ0(u)du

]
= −β0(1− F (t)) ln(1− F (t)),

and the final expression for the elasticity in equation 7 becomes

E(F (t))ν0 = −β0ν0
(1− F (t)) ln(1− F (t))

F (t)
. (8)

We use our Fannie Mae’s loan performance data for estimating the function F (t) in

equation 5. We set t = 120 months as the typical time for balloon payment and estimate,

for each time u ∈ [1, 2, . . . t], the average value of the the vector of explanatory variables

ν(u) from the cross-sectional sample of loans in the data set. We then assess the numerical

value of the integral by combining these results with the calibrated vector of coefficients β,

and the values of the baseline function λ0(u) using the calibrated parameters γ and p.
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