Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids

TitleBrownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
Publication TypeJournal Article
Year of Publication2004
AuthorsBhattacharya, Prajesh, S.K. Saha, A. Yadav, Patrick E. Phelan, and Ravi S. Prasher
JournalJournal of Applied Physics
Volume95
Start Page6492
Issue11
Pagination6492–6494
Date Published06/2004
Keywordscomplex fluids, Disperse systems, Thermal conduction in nonmetallic liquids
Abstract

A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivities than their base fluids. Therefore, it is of interest to predict the effective thermal conductivity of such a nanofluid under different conditions, especially since only limited experimental data are available. We have developed a technique to compute the effective thermal conductivity of a nanofluid using Brownian dynamics simulation, which has the advantage of being computationally less expensive than molecular dynamics, and have coupled that with the equilibrium Green-Kubo method. By comparing the results of our calculation with the available experimental data, we show that our technique predicts the thermal conductivity of nanofluids to a good level of accuracy.

DOI10.1063/1.1736319