Graph-theoretic Methods in Simulation Using SPARK

Publication Type

Conference Proceedings

Date Published

04/2004

Abstract

This paper deals with simulation modeling of nonlinear, deterministic, continuous systems. It describes how the Simulation Problem Analysis and Research Kernel (SPARK) uses the mathematical graph both to describe models of such systems, and to solve the embodied differential-algebraic equation systems (DAEs). Problems are described declaratively rather than algorithmically, with atomic objects representing individual equations and macro objects representing larger programming entities (submodels) in a smooth hierarchy. Internally, in a preprocessing step, graphs are used to represent the problem at the level of equations and variables rather than procedural, multi-equation blocks. Benefits obtained include models that are without predefined input and output sets, enhancing modeling flexibility and code reusability, and relieving the modeler from manual algorithm development. Moreover, graph algorithms are used for problem decomposition and reduction, greatly reducing solution time for wide classes of problems. After describing the methodology the paper presents results of benchmark tests that quantify performance advantages relative to conventional methods. In a somewhat contrived nonlinear example we show O performance as opposed

Conference Name

High Performance Computing Symposium of the Advanced Simulation Technologies Conference

Year of Publication

2004

Conference Location

Arlington, VA

Series Title

Society for Modeling Simulation International
Research Areas